E. Jamie and Tree(树链剖分 + 线段树)

    科技2022-07-17  104

    E. Jamie and Tree

    思路

    直接 r o o t = v root = v root=v

    l c a lca lca l c a = l c a ( r o o t , u ) , l c a ( r o o t , v ) , l c a ( u , v ) lca = {lca(root, u), lca(root, v), lca(u, v)} lca=lca(root,u),lca(root,v),lca(u,v) d e p dep dep最深的:

    r o o t root root不在 l c a lca lca的子树上:

    直接 [ l [ l c a ] , r [ l c a ] ] [l[lca], r[lca]] [l[lca],r[lca]]区间更新 x x x

    r o o t root root l c a lca lca的子树上:

    先把整棵树更新一遍+x,然后找到 r o o t − > l c a root -> lca root>lca路径上与 l c a lca lca的儿子节点,然后更新他的子树-x

    操作三:

    r o o t root root不在 v v v的子树上:

    直接 s u m ( l [ v ] , r [ v ] ) sum({l[v], r[v]}) sum(l[v],r[v])

    r o o t root root v v v的子树上:

    + s u m ( 1 , n ) + sum(1, n) +sum(1,n)

    − s u m ( n e x t s o n   o f   l c a ) -sum(next_{son\ of\ lca}) sum(nextson of lca)类似操作二。

    最后,操作二要特判一下 r o o t = = l c a root == lca root==lca和操作三要特判一下 r o o t = v root = v root=v,这个时候直接修改或者查询整个 [ 1 , n ] [1, n] [1,n]的区间。

    代码

    /* Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> #define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1 using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii; const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f; inline ll read() { ll f = 1, x = 0; char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f * x; } const int N = 1e5 + 10; int head[N], to[N << 1], nex[N << 1], cnt = 1, root; int son[N], sz[N], dep[N], fa[N], top[N], rk[N], id[N], l[N], r[N], tot; ll sum[N << 2], lazy[N << 2], value[N], n, m; void add(int x, int y) { to[cnt] = y; nex[cnt] = head[x]; head[x] = cnt++; } void dfs1(int rt, int f) { dep[rt] = dep[f] + 1; sz[rt] = 1, fa[rt] = f; for(int i = head[rt]; i; i = nex[i]) { if(to[i] == f) continue; dfs1(to[i], rt); sz[rt] += sz[to[i]]; if(!son[rt] || sz[to[i]] > sz[son[rt]]) son[rt] = to[i]; } } void dfs2(int rt, int tp) { rk[++tot] = rt, id[rt] = tot; top[rt] = tp; l[rt] = r[rt] = tot; if(!son[rt]) return ; dfs2(son[rt], tp); for(int i = head[rt]; i; i = nex[i]) { if(to[i] == fa[rt] || to[i] == son[rt]) continue; dfs2(to[i], to[i]); } r[rt] = tot; } void push_down(int rt, int l, int r) { if(lazy[rt]) { lazy[ls] += lazy[rt], lazy[rs] += lazy[rt]; sum[ls] += 1ll * (mid - l + 1) * lazy[rt]; sum[rs] += 1ll * (r - mid) * lazy[rt]; lazy[rt] = 0; } } void push_up(int rt) { sum[rt] = sum[ls] + sum[rs]; } void build(int rt, int l, int r) { if(l == r) { sum[rt] = value[rk[l]]; return ; } build(lson); build(rson); push_up(rt); } void update(int rt, int l, int r, int L, int R, int w) { if(l >= L && r <= R) { lazy[rt] += w; sum[rt] += 1ll * (r - l + 1) * w; return ; } push_down(rt, l, r); if(L <= mid) update(lson, L, R, w); if(R > mid) update(rson, L, R, w); push_up(rt); } ll query(int rt, int l, int r, int L, int R) { if(l >= L && r <= R) return sum[rt]; push_down(rt, l, r); ll ans = 0; if(L <= mid) ans += query(lson, L, R); if(R > mid) ans += query(rson, L, R); return ans; } int Lca(int x, int y) { while(top[x] != top[y]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]]; } return dep[x] < dep[y] ? x : y; } int Max(int x, int y) { return dep[x] > dep[y] ? x : y; } void update(int x, int y, int value) { while(top[x] != top[y]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); update(1, 1, n, id[x], id[top[x]], value); x = fa[top[x]]; } if(dep[x] > dep[y]) swap(x, y); update(1, 1, n, id[x], id[y], value); } ll query(int x, int y) { ll ans = 0; while(top[x] != top[y]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); ans += query(1, 1, n, id[x], id[top[x]]); x = fa[top[x]]; } if(dep[x] > dep[y]) swap(x, y); ans += query(1, 1, n, id[x], id[y]); return ans; } int get(int u) { int v = root; while(top[v] != top[u]) { if(fa[top[v]] == u) return top[v]; v = fa[top[v]]; } return son[u]; } int main() { // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); n = read(), m = read(); for(int i = 1; i <= n; i++) { value[i] = read(); } for(int i = 1; i < n; i++) { int x = read(), y = read(); add(x, y); add(y, x); } dfs1(1, 0); dfs2(1, 1); build(1, 1, n); root = 1; for(int i = 1; i <= m; i++) { int op = read(); if(op == 1) { root = read(); } else if(op == 2) { int u = read(), v = read(), x = read(); int lca = Max(Max(Lca(u, v), Lca(root, v)), Lca(root, u)); if(lca == root) { update(1, 1, n, 1, n, x); } else { if(id[root] < l[lca] || id[root] > r[lca]) { update(1, 1, n, l[lca], r[lca], x); } else { lca = get(lca); update(1, 1, n, 1, n, x); update(1, 1, n, l[lca], r[lca], -x); } } } else { int v = read(); if(v == root) { printf("%lld\n", query(1, 1, n, 1, n)); } else { if(id[root] < l[v] || id[root] > r[v]) { printf("%lld\n", query(1, 1, n, l[v], r[v])); } else { ll ans = query(1, 1, n, 1, n); v = get(v); ans -= query(1, 1, n, l[v], r[v]); printf("%lld\n", ans); } } } } return 0; }
    Processed: 0.010, SQL: 8