2020牛客国庆集训派对day4 Arithmetic Progressions

    科技2022-07-21  108

    Arithmetic Progressions 链接:https://ac.nowcoder.com/acm/contest/7831/B 来源:牛客网

    题目描述

    An arithmetic progression is a sequence of numbers a1, a2, ..., ak where the difference of consecutive members ai+1−ai is a constant (1 ≤ i ≤ k−1). For example, the sequence 5, 8, 11, 14, 17 is an arithmetic progression of length 5 with the common difference 3. In this problem, you are requested to find the longest arithmetic progression which can be formed selecting some numbers from a given set of numbers. For example, if the given set of numbers is {0, 1, 3, 5, 6, 9}, you can form arithmetic progressions such as 0, 3, 6, 9 with the common difference 3, or 9, 5, 1 with the common difference −4. In this case, the progressions 0, 3, 6, 9 and 9, 6, 3, 0 are the longest.

    输入描述: 示例1 输入 复制

    6 0 1 3 5 6 9

    输出 复制

    4

    示例2 输入 复制

    7 1 4 7 3 2 6 5

    输出 复制

    7

    示例3 输入 复制

    5 1 2 4 8 16

    输出 复制

    2

    题意:

    给定一些数,允许重新排列,求其中最长的等差数列的长度

    题解:

    队友做得。。。队友说是简单dp p[i][j] 表示区间[i, j] 的最大等差序列长度,从当前位置往前往后找满足条件的区间,如果有就加一,边界dp[i][i + 1] = 2,不难理解,其实任意dp[i][j](j!=i) 最小都为2.

    代码:

    #include<bits/stdc++.h> #define maxn 6000 using namespace std; int dp[maxn][maxn]; long long a[maxn]; int n; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%lld",&a[i]); } sort(a+1,a+1+n); int ans=0; for(int i=1;i<=n;i++){ int k=i-1; for(int j=i+1;j<=n;j++){ dp[i][j]=2; int d=a[j]-a[i]; while(k>=1&&a[i]-a[k]<d){ k--; } if(k==0||a[i]-a[k]!=d) continue; dp[i][j]=max(dp[i][j],dp[k][i]+1); ans=max(ans,dp[i][j]); } } printf("%d",ans==0? 2 : ans); return 0; }
    Processed: 0.010, SQL: 8