1、Map程序的编写
import java.io.IOException; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; //四个泛型中,前两个指定mapper输入数据类型,KEYIN是输入的key的类型,VALUEIN是输入的value的类型 //map 和 reduce 的数据输入输出都是以key-value对的形式封装 //默认情况下,框架传递给我们的mapper的数据中,key是要处理的文本中一行的起始偏移量,这一行的内容作为value public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable> { //mapreduce框架每读一行数据就调用一次该方法 @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException { //具体业务逻辑就写在这个方法体中,而且我们业务要处理的数据已经被框架传进来了,在方法的参数中key-value //key是这一行的起始偏移量,这一行的内容作为value //将这行内容转换为String类型 String line = value.toString(); //这一行文本按特定分隔符切分 String[] words = StringUtils.split(line," "); //遍历这个单词数组输出为k-v形式,k:单词,v:1 for(String word:words){ context.write(new Text(word), new LongWritable(1)); } } }2、reduce程序编写
import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable> { //框架在map处理完成后,将所有的kv对缓存起来,进行分组,然后传递一个组<key,values{}>,调用一次reduce方法 @Override protected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException { long count = 0; for(LongWritable value:values){ count+=value.get(); } //输出这个单词的统计结果 context.write(key, new LongWritable(count)); } }3、总控程序编写
集群版(需要打成jar包放到Linux中用yarn去运行) import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 用来描述一个特定作业 * 比如,改作业使用哪个类作为逻辑处理中的map,哪个作为reduce * 还可以指定改作业要处理的数据所在的路径 * 还可以指定改作业输出的结果放到哪个路径 * * @author WEI */ public class WCRunner { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job wcjob = Job.getInstance(conf); //设置整个job所用的那些类在哪个jar包 wcjob.setJarByClass(WCRunner.class); //本job使用的mapper和reducer类 wcjob.setMapperClass(WCMapper.class); wcjob.setReducerClass(WCReducer.class); //指定reduce的输出数据类型 wcjob.setOutputKeyClass(Text.class); wcjob.setOutputValueClass(LongWritable.class); //指定mapper的输出数据类型 wcjob.setMapOutputKeyClass(Text.class); wcjob.setMapOutputValueClass(LongWritable.class); //指定要处理的输入数据存放路径 FileInputFormat.setInputPaths(wcjob, new Path("/wc/src")); //指定处理结果的输出数据存放路径 FileOutputFormat.setOutputPath(wcjob, new Path("/wc/output")); //将job提交给集群运行 wcjob.waitForCompletion(true); } } 单机版(本地运行,不用mapreduce框架) import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WCRunnerLocal { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job wcjob = Job.getInstance(conf); //设置整个job所用的那些类在哪个jar包 wcjob.setJarByClass(WCRunnerLocal.class); //本job使用的mapper和reducer类 wcjob.setMapperClass(WCMapper.class); wcjob.setReducerClass(WCReducer.class); //指定reduce的输出数据类型 wcjob.setOutputKeyClass(Text.class); wcjob.setOutputValueClass(LongWritable.class); //指定mapper的输出数据类型 wcjob.setMapOutputKeyClass(Text.class); wcjob.setMapOutputValueClass(LongWritable.class); //指定要处理的输入数据存放路径 FileInputFormat.setInputPaths(wcjob, new Path("L:\\documents\\hadoopTest\\src")); //指定处理结果的输出数据存放路径 FileOutputFormat.setOutputPath(wcjob, new Path("L:\\documents\\hadoopTest\\output")); //将job提交给集群运行 wcjob.waitForCompletion(true); } }