Faster-RCNN原理及相应概念解释

    科技2022-07-21  109

    R-CNN --> FAST-RCNN --> FASTER-RCNN

    R-CNN: (1)输入测试图像; (2)利用selective search 算法在图像中从上到下提取2000个左右的Region Proposal; (3)将每个Region Proposal缩放(warp)成227*227的大小并输入到CNN,将CNN的fc7层的输出作为特征; (4)将每个Region Proposal提取的CNN特征输入到SVM进行分类; (5)对于SVM分好类的Region Proposal做边框回归,用Bounding box回归值校正原来的建议窗口,生成预测窗口坐标.

    缺陷: (1) 训练分为多个阶段,步骤繁琐:微调网络 训练SVM 训练边框回归器; (2) 训练耗时,占用磁盘空间大;5000张图像产生几百G的特征文件; (3) 速度慢:使用GPU,VGG16模型处理一张图像需要47s; (4) 测试速度慢:每个候选区域需要运行整个前向CNN计算; (5) SVM和回归是事后操作,在SVM和回归过程中CNN特征没有被学习更新.

    FAST-RCNN: (1)输入测试图像; (2)利用selective search 算法在图像中从上到下提取2000个左右的建议窗口(Region Proposal); (3)将整张图片输入CNN,进行特征提取; (4)把建议窗口映射到CNN的最后一层卷积feature map上; (5)通过RoI pooling层使每个建议窗口生成固定尺寸的fea

    Processed: 0.009, SQL: 8