第二章 随机向量
课堂代码及注释其他笔记第三次作业
课堂代码及注释
from scipy
import stats
import numpy
as np
import scipy
.stats
as stats
import matplotlib
.pyplot
as plt
from mpl_toolkits
.mplot3d
import Axes3D
import pandas
as pd
rv
=stats
.norm
(2,3)
dir(rv
)
rv
.cdf
(2)
rv
.pdf
(2)
rv
.ppf
(0.9)
x
=np
.linspace
(-7,11,num
=100)
rv
.pdf
(x
)
plt
.plot
(x
,rv
.pdf
(x
))
x1
=x2
=np
.linspace
(0,4,21)
def fx(x1
, x2
):
return np
.exp
(-(x1
+x2
))
fx
(1,2)
np
.meshgrid
(x1
,x2
)
X
, Y
= np
.meshgrid
(x1
,x2
)
a
,b
=np
.meshgrid
([1,2],[4,5,6])
np
.ravel
(a
)
np
.ravel
(a
);np
.ravel
(b
)
fx
(np
.ravel
(a
),np
.ravel
(b
))
fx
(np
.ravel
(X
),np
.ravel
(Y
))
c
=np
.array
(fx
(np
.ravel
(a
),np
.ravel
(b
)))
C
=c
.reshape
(a
.shape
)
fig
=plt
.figure
()
ax
=fig
.gca
(projection
="3d")
ax
.plot_surface
(a
,b
,C
)
plt
.show
()
z
=np
.array
(fx
(np
.ravel
(X
),np
.ravel
(Y
)))
Z
=z
.reshape
(X
.shape
)
fig
=plt
.figure
()
ax
=fig
.gca
(projection
="3d")
ax
.plot_surface
(X
,Y
,Z
)
plt
.show
()
def f1x(x1
):
return np
.exp
(-x1
)
pass
x1
=np
.linspace
(0,10,num
=101)
y
=f1x
(x1
)
plt
.plot
(x1
,y
)
dat
=np
.random
.randn
(50,4);dat
dat
=pd
.DataFrame
(dat
);dat
dat
.mean
()
dat
.cov
()
dat
.corr
()
trees
=pd
.read_csv
("F:\\基础数学课\\应用多元统计分析\\trees.csv")
type(trees
)
trees
.mean
()
trees
.cov
()
trees
.corr
()
trees
.var
()
trees
.std
()
trees
.to_numpy
()
trees
.to_numpy
().mean
()
trees
.iloc
[:,0]
trees
.mean
()[0]
(trees
.iloc
[:,0]-trees
.mean
()[0])/trees
.std
()[0]
D
=np
.diag
(trees
.std
());D
trees_change
=np
.ones
((31,1)).dot
(trees
.mean
().to_numpy
().reshape
((1,3)))
(trees
-trees_change
).dot
(np
.linalg
.inv
(D
))
D
.dot
(trees
.corr
()).dot
(D
)
其他笔记
import numpy
as np
import scipy
.stats
as stats
import matplotlib
.pyplot
as plt
from mpl_toolkits
.mplot3d
import Axes3D
rv
= stats
.norm
(2,3)
dir(rv
)
rv
.cdf
(2)
rv
.pdf
(2)
rv
.ppf
(0.975)
x
=np
.linspace
(-7,11,100)
y
=rv
.pdf
(x
)
plt
.plot
(x
,y
)
x
=y
=np
.linspace
(0,4,21)
def fx(x1
,x2
):
return np
.exp
(-(x1
+x2
))
X
=np
.meshgrid
(x
,y
)
X
,Y
= np
.meshgrid
(x
,y
)
Z
= fx
(X
,Y
)
x
=([1,2])
y
=([3,4,5])
X
,Y
= np
.meshgrid
(x
,y
)
Z
=fx
(X
,Y
)
fig
=plt
.figure
()
ax
=fig
.gca
(projection
="3d")
ax
.plot_surface
(X
,Y
,Z
)
plt
.show
()
def f1x(x1
):
return np
.exp
(-x1
)
x1
=np
.linspace
(0,10,101)
y
=f1x
(x1
)
plt
.plot
(x1
,y
)
import pandas
as pd
import numpy
as np
dat
=np
.random
.randn
(50,4)
dat
=pd
.DataFrame
(dat
)
dat
.mean
()
dat
.cov
()
dat
.corr
()
第三次作业
import numpy
as np
import matplotlib
.pyplot
as plt
from mpl_toolkits
.mplot3d
import Axes3D
def fx(x1
, x2
):
return (6/5*x1
**2)*(4*x1
*x2
+1)
x1
=x2
=np
.linspace
(0,1,41)
np
.meshgrid
(x1
,x2
)
X
, Y
= np
.meshgrid
(x1
,x2
)
z
=np
.array
(fx
(np
.ravel
(X
),np
.ravel
(Y
)))
Z
=z
.reshape
(X
.shape
)
fig
=plt
.figure
()
ax
=fig
.gca
(projection
="3d")
ax
.plot_surface
(X
,Y
,Z
)
plt
.show
()
def f1x(x1
):
return 12/5*x1
**3+6/5*x1
**2
x1
=np
.linspace
(0,1,num
=101)
y1
=f1x
(x1
)
plt
.plot
(x1
,y1
)
def f2x(x2
):
return 6/5*x2
**2+2/5
x1
=np
.linspace
(0,1,num
=101)
y2
=f2x
(x2
)
plt
.plot
(x2
,y2
)
def fx1_x2(x1
,x2
):
return 3*x1
**2*(4*x1
*x2
+1)/(3*x2
+1)
x1
=np
.linspace
(0,1,num
=101)
y3
=fx1_x2
(x1
,0.5)
plt
.plot
(x1
,y3
)
def fx2_x1(x1
,x2
):
return (4*x1
*x2
+1)/(2*x1
+1)
x2
=np
.linspace
(0,1,num
=101)
y4
=fx2_x1
(0.5,x2
)
plt
.plot
(x2
,y4
)
x_cov1
=np
.array
([[9,1,-2],[1,20,3],[-2,3,12]])
type(x_cov1
)
A
=np
.array
([[2,3,1],[1,-2,5],[0,1,-1]])
y_cov
=A
.dot
(x_cov1
).dot
(A
.T
);y_cov
x_cov2
=np
.array
([[16,-4,3],[-4,4,-2],[3,-2,9]])
D
=np
.diag
([1/4,1/2,1/3])
R_x
= D
.dot
(x_cov2
).dot
(D
);R_x
import pandas
as pd
import numpy
as np
import matplotlib
.pyplot
as plt
from mpl_toolkits
.mplot3d
import Axes3D
trees
= pd
.read_csv
("F:\\基础数学课\\应用多元统计分析\\trees.csv")
trees
.mean
()
trees
.cov
()
trees
.corr
()
trees
.var
()
trees
.std
()
转载请注明原文地址:https://blackberry.8miu.com/read-13507.html