Spark运行基本流程参见下面示意图:
构建Spark Application的运行环境(启动SparkContext),SparkContext向资源管理器(可以是Standalone、Mesos或YARN)注册并申请运行Executor资源; 资源管理器分配Executor资源并启动Executor,Executor运行情况将随着心跳发送到资源管理器上; SparkContext构建成DAG图,将DAG图分解成Stage,并把Taskset发送给Task Scheduler。Executor向SparkContext申请Task,Task Scheduler将Task发放给Executor运行同时SparkContext将应用程序代码发放给Executor。 Task在Executor上运行,运行完毕释放所有资源。
Spark运行架构特点:
每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行tasks。Spark任务与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了。提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark程序运行过程中SparkContext和Executor之间有大量的信息交换;如果想在远程集群中运行,最好使用RPC将SparkContext提交给集群,不要远离Worker运行SparkContext。Task采用了数据本地性和推测执行的优化机制。1.Application:指的是用户编写的Spark应用程序/代码,包含了Driver功能代码和分布在集群中多个节点上运行的Executor代码。
2.Driver:Spark中的Driver即运行上述Application的Main()函数并且创建SparkContext,SparkContext负责和ClusterManager通信,进行资源的申请、任务的分配和监控等
3.Cluster Manager:指的是在集群上获取资源的外部服务,Standalone模式下由Master负责,Yarn模式下ResourceManager负责;4.Executor:是运行在工作节点Worker上的进程,负责运行任务,并为应用程序存储数据,是执行分区计算任务的进程;
5.RDD:Resilient Distributed Dataset弹性分布式数据集,是分布式内存的一个抽象概念;
6.DAG:Directed Acyclic Graph有向无环图,反映RDD之间的依赖关系和执行流程;
7.Job:作业,按照DAG执行就是一个作业;Job==DAG
8.Stage:阶段,是作业的基本调度单位,同一个Stage中的Task可以并行执行,多个Task组成TaskSet任务集
9.Task:任务,运行在Executor上的工作单元,一个 Task 计算一个分区partition,包括pipline上的一系列操作