箱形图: ●箱形图(Box-plot) 又称为盒须图、盘式图或箱线图,体现数据的分散情况 ●是一种用作显示一组数据分散情况资料的统计图。 ●上边缘,上四分位数,中位数,下四分位数,下边缘,异常值。
matplotlib.pyplot.boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=True, autorange=False, zorder=None, *, data=None)参数:
x:数组或向量序列。输入数据。 notch:bool,默认值:False。
绘制带阴影的箱形图(True)还是矩形箱形图(False)sym:str,可选。
飞行点的默认符号。空字符串(’’)隐藏传单。如果为None,则传单默认为“ b +”。flierprops参数提供了更多控制。whis:float或(float,float),默认值:1.5。 labels:序列,可选。每个数据集的标签(每个数据集一个)。
in:
import numpy as np #导入 numpyas import matplotlib.pyplot as plt #导入 matplotlib.pyplot np.random.seed(1000)#生成一组固定随机数值。 #传入seed的数值用于指定随机数生成时所用算法开始时所选定的整数值, #如果使用相同的seed()值,则每次生成的随机数都相同 data=np.random.normal(size=1000,loc=0,scale=1) plt.boxplot(data,sym='o',whis=1.5)out:
{'whiskers': [<matplotlib.lines.Line2D at 0x1a255a82da0>, <matplotlib.lines.Line2D at 0x1a255a82e80>], 'caps': [<matplotlib.lines.Line2D at 0x1a255a90470>, <matplotlib.lines.Line2D at 0x1a255a907b8>], 'boxes': [<matplotlib.lines.Line2D at 0x1a255a829b0>], 'medians': [<matplotlib.lines.Line2D at 0x1a255a90b00>], 'fliers': [<matplotlib.lines.Line2D at 0x1a255a90e48>], 'means': []}in:
np.random.seed(1000)#生成一组固定随机数值。 data=np.random.normal(size=(1000,4),loc=0,scale=1)#生成四组随机数值 labels=['A','B','C','D'] plt.boxplot(data,labels=labels)out:
{'whiskers': [<matplotlib.lines.Line2D at 0x1a255adfa90>, <matplotlib.lines.Line2D at 0x1a255adfdd8>, <matplotlib.lines.Line2D at 0x1a255aecf60>, <matplotlib.lines.Line2D at 0x1a255af6550>, <matplotlib.lines.Line2D at 0x1a255aff940>, <matplotlib.lines.Line2D at 0x1a255affc88>, <matplotlib.lines.Line2D at 0x1a255b0be10>, <matplotlib.lines.Line2D at 0x1a255b14400>], 'caps': [<matplotlib.lines.Line2D at 0x1a255adfeb8>, <matplotlib.lines.Line2D at 0x1a255aec4a8>, <matplotlib.lines.Line2D at 0x1a255af6898>, <matplotlib.lines.Line2D at 0x1a255af6be0>, <matplotlib.lines.Line2D at 0x1a255afffd0>, <matplotlib.lines.Line2D at 0x1a255b0b358>, <matplotlib.lines.Line2D at 0x1a255b14748>, <matplotlib.lines.Line2D at 0x1a255b14a90>], 'boxes': [<matplotlib.lines.Line2D at 0x1a255adf6a0>, <matplotlib.lines.Line2D at 0x1a255aece80>, <matplotlib.lines.Line2D at 0x1a255aff5f8>, <matplotlib.lines.Line2D at 0x1a255b0bd30>], 'medians': [<matplotlib.lines.Line2D at 0x1a255aec7f0>, <matplotlib.lines.Line2D at 0x1a255af6f28>, <matplotlib.lines.Line2D at 0x1a255b0b6a0>, <matplotlib.lines.Line2D at 0x1a255b14dd8>], 'fliers': [<matplotlib.lines.Line2D at 0x1a255aecb38>, <matplotlib.lines.Line2D at 0x1a255aff2b0>, <matplotlib.lines.Line2D at 0x1a255b0b9e8>, <matplotlib.lines.Line2D at 0x1a255b14eb8>], 'means': []}