hive支持的主要储存的格式有:
TEXTFILESEQUENCEFILEORCPARQUET行存储的特点:
查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。列存储的特点:
因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。TEXTFILE和SEQUENCEFILE是基于行存储的
ORC和PARQUENT是基于列存储的
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用,但使用Gzip这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
Orc (Optimized Row Columnar)是Hive 0.11版里引入的新的存储格式。
每个orc文件中由多个sptripe组成每个stripe250mb大小每个stripe由三个部分,分别为: index datarow datastripe footer[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-T596iray-1601709908157)(E:\work\青软大数据\学习笔记\image\orc数据存储格式.png)]
index data:是一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引应该只是记录某行的各字段在Row Data中的offset。Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。Stripe Footer:存的是各个Stream的类型,长度等信息。每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发
Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。
通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。
一个Parquet文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件。
其中Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量。
文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。
除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。
数据页用于存储当前行组中该列的值。字典页存储该列值的编码字典,每一个列块中最多包含一个字典页。索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。