使用小型变压器的线圈设计实验磁标初步实验

    科技2022-08-22  115

     

    00背景介绍


    为了给 全国大学生智能车竞赛 预研磁标导航赛题,根据六自由度电磁磁标定位方案,设计在平面内用于导航的磁标系统。这其中需要对于基本的基于线圈的感应和检测方案进行实验。

    为了方便实验,从一些小型的电源变压器拆下期中的原边、副边的线圈用于初步的实验。

    主要的实验包括:

    匹配谐振线圈然后进行接收

     

    01变压器电磁线圈


    下面是从两个变压器拆下来两对(两个原边、两个副边)的电气性能,测量100Hz。

    线圈1,2:变压器的原边(220VAC) 线圈3,4:变压器的副边(9VAC) 线圈电感(mH)等效串联电阻(Ω)线圈1223699线圈2218695线圈30.8932.662线圈40.8933.752

    ▲ 从小型电源中的变压器中拆卸下来的两组线圈

     

    02谐振驱动


    1.测量电路

    在电感并联0.01uF电容,通过测量谐振电压和电容来确定谐振频率。

    ▲ 测量电路

    取L=0.223H, C = 0.01uF,那么谐振频率大约为:

    f r e s = 1 2 π L ⋅ C = 1 2 π 0.223 × 0.01 × 1 0 − 6 = 3370.3 H z f_{res} = {1 \over {2\pi \sqrt {L \cdot C} }} = {1 \over {2\pi \sqrt {0.223 \times 0.01 \times 10^{ - 6} } }} = 3370.3Hz fres=2πLC 1=2π0.223×0.01×106 1=3370.3Hz

    2.测量数据

    FreqVoltage1999.9990900.1480502099.9994300.1329502199.9987400.1185802299.9993500.1051102400.0004700.0924402499.9972500.0805362600.0000000.0692632699.9985900.0587792799.9982300.0491432899.9978600.0406082999.9908700.0335213099.9982900.0285843200.0048000.0266153300.0039800.0279423399.9932900.0319133500.0042900.0376293599.9999600.0441233700.0136200.0511403799.9813000.0586343900.0146400.0658634000.0008300.0729404099.9857800.0754224200.0203600.0873814299.9760200.0945324399.9692200.1017504499.9989900.1086204600.0043400.1155604599.9744600.115460

    ▲ Frequency(Hz) Voltage(V)

    ch1=[2000.03,2099.98,2200.01,2300.01,2400.00,2500.03,2600.00,2700.02,2800.02,2899.97,3000.00,3099.99,3199.99,3299.98,3400.00,3499.97,3599.97,3699.97,3800.00,3899.98,3999.97,4099.98,4199.98,4300.01,4399.97,4499.99,4599.97,4699.96] ch2=[0.15,0.13,0.12,0.10,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.03,0.03,0.03,0.03,0.04,0.04,0.05,0.06,0.06,0.07,0.08,0.09,0.09,0.10,0.11,0.11,0.12]

    3.电感的串联和并联模型

    X p = j ω L p / / R p = j ω L p ⋅ R p j ω L p + R p = j ω L s + R s X_p = j\omega L_p //R_p = {{j\omega L_p \cdot R_p } \over {j\omega L_p + R_p }} = j\omega L_s + R_s Xp=jωLp//Rp=jωLp+RpjωLpRp=jωLs+Rs

    将: ω = 2 ⋅ π ⋅ 100 \omega = 2 \cdot \pi \cdot 100 ω=2π100,, L p = 0.223 H L_p = 0.223H Lp=0.223H R s = 27 Ω R_s = 27\Omega Rs=27Ω。可以求解: L s = 0 . 2143 {\rm{L}}_s {\rm{ = 0}}{\rm{.2143}} Ls=0.2143 R s = 27 . 00 {\rm{R}}_s {\rm{ = 27}}{\rm{.00}} Rs=27.00

    #!/usr/local/bin/python # -*- coding: gbk -*- #============================================================ # TEST1.PY -- by Dr. ZhuoQing 2020-10-06 # # Note: #============================================================ from headm import * from sympy import symbols,simplify,expand,print_latex,re,im,I #------------------------------------------------------------ Ls,Rs,o = symbols('L_s,R_s,o', Complex=True) plf = lambda a,b:a*b/(a+b) result = plf(I*o*Ls,Rs).subs({Ls:223e-3, Rs:699, o:100*2*pi}) printf(im(result) / (2 * pi * 100)) result = re(result)+I*im(result) #------------------------------------------------------------ print_latex(result) tspexecutepythoncmd("msg2latex") #------------------------------------------------------------ # END OF FILE : TEST1.PY #============================================================

    注意:相关文献链接总博文


    6DOF Elecromagnetic Tracker Construction An introduction to a 3-axis Transmitter Coil A novel position method based on 3-axis Coil
    Processed: 0.024, SQL: 9