数据加载
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('E:/tensorflow/1005/data/MNIST_data/',one_hot=True) #我先将数据下载到文件家中解压缩参数定义域网络搭建
#参数 n_input = 28 n_step = 28 n_hidden = 128 n_classes = 10 #定义占位符 x = tf.placeholder(tf.float32,[None,n_step,n_input]) #这里的x为[batch_size * 28 * 28] y = tf.placeholder(tf.float32,[None,n_classes]) #y为[batch_size,10] x1 = tf.unstack(x,n_step,axis=1) #返回一个长度为T的List,list的长度为28,第一项为--》【:,0,:】,size = 【batch_size,列数】,就是将一批中的所有行作为一个输入注意:static_rnn输入时一个List,代表序列的List,长度为T。 可以理解将图片按行输入
lstm = tf.contrib.rnn.BasicLSTMCell(128,forget_bias=1.0) #cell中128表示有128个cell状态、输出状态 outputs, states = tf.contrib.rnn.static_rnn(lstm,x1,dtype=tf.float32)outputs 是一个list,这里是一个长度为28的list,每输入一行数据输出一项 list的每一项为【batch_size,128】 states为【2,batch_size,128】,2分别指output和cell
pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn=None)这里只取了最后一层的输出(前面层的信息通过LSTM传递到最后一层),所以输入size是【batch_size,128】,pred结果是【batch_size,2】
数据处理
import numpy as np trainX = np.array(mnist.train.images.reshape([-1,28,28])) trainY = np.array(mnist.train.labels) testX = np.array(mnist.test.images.reshape([-1,28,28])) testY = np.array(mnist.test.labels)运行。。。。
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y)) #交叉熵 optimizer = tf.train.AdamOptimizer(0.01).minimize(loss) initializer = tf.global_variables_initializer() accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(pred,axis=1),tf.argmax(y,axis=1)),tf.float32)) with tf.Session() as sess: sess.run(initializer) for i in range(1000): timg = trainX[55*i:55*(i+1)] tlab = trainY[55*i:55*(i+1)] #print(timg.shape) #print(tlab.shape) sess.run(optimizer,feed_dict={x:timg,y:tlab}) l,a = sess.run([loss,accuracy],feed_dict={x:timg,y:tlab}) print('cishu {0} : loss = {1}, accuracy = {2}'.format(i+1,l,a)) l,a = sess.run([loss,accuracy],feed_dict={x:testX,y:testY}) print('Test: loss = {0}, accuracy = {1}'.format(l,a))参考文献:深度学习之Tensorflow,李金洪
