CF1106F Lunar New Year and a Recursive Sequence 矩阵加速+BSGS+原根+扩展欧几里得

    科技2022-08-26  102

    文章目录

    一.题目二.Solution三.CodeThanks!

    一.题目

    有一串 n ( n ⩽ 1 0 9 ) n(n\leqslant10^9) n(n109)个数的数列,给你 b 1 ∼ b k ( k ⩽ 100 ) b_1\sim b_k(k\leqslant100) b1bk(k100) i > k i > k i>ki>k i>ki>k时: f i = ( ∏ j = 1 k f i − j b j )   m o d   998244353 f_i=(\prod\limits_{j=1}^kf_{i-j}^{b_j})\bmod{998244353} fi=(j=1kfijbj)mod998244353已知 f 1 = f 2 = ⋯ = f k − 1 = 1 , f n = m f_1=f_2=\cdots=f_{k-1}=1,f_n=m f1=f2==fk1=1,fn=m,问最小的正整数 f k f_k fk可能是多少?

    二.Solution

    这是一道反正我考场上推不出来的的数学题。 首先因为 f 1 ∼ f k − 1 = 1 f_1\sim f_{k-1}=1 f1fk1=1并且递推式是累乘,所以 f n f_n fn必定可以表示成 f n = f k p f_n=f_k^p fn=fkp的形式,然后 p p p又满足递推式: g [ i ] = ∏ j = 1 k b [ j ] ∗ g [ i − j ] g[i]=\prod^{k}_{j=1}b[j]*g[i-j] g[i]=j=1kb[j]g[ij]所以可以用矩阵加速来计算 p p p的大小,构造这样一个递推矩阵 B B B 0 0 . . . 0 b [ k ] 1 0 . . . 0 b [ k − 1 ] 0 1 . . . 0 b [ k − 2 ] . . . . . . . . . . . . 0 0 . . . 1 b [ 1 ] \begin{matrix} 0 & 0 & ... & 0 & b[k] \\ 1 & 0 & ... & 0 & b[k - 1] \\ 0 & 1 & ... & 0 & b[k - 2] \\ ... &... &... &...\\ 0 & 0 & ... & 1 & b[1] \end{matrix} 010...0001...0...............000...1b[k]b[k1]b[k2]b[1] 这样一个答案矩阵 A A A 0 0 . . . 1 \begin{matrix} 0 & 0 & ... & 1 \end{matrix} 00...1 最后快速幂完成后 p p p就是 A . j z [ 1 ] [ k ] A.jz[1][k] A.jz[1][k] 那么问题就来到 f k p ≡ m ( m o d   998244353 ) f_{k}^{p}\equiv m (mod\,998244353) fkpm(mod998244353) f k f_k fk。 这里可以用原根做,我们知道 998244353 998244353 998244353的原根是 3 3 3,那么设 f k ≡ 3 s ( m o d   998244353 ) f_k\equiv 3^s(mod\,998244353) fk3s(mod998244353),设 m ≡ 3 t ( m o d   998244353 ) m\equiv 3^t(mod\,998244353) m3t(mod998244353),因为 m m m已知,所以可以用BSGS求出 t t t,最后又化成: 3 s p ≡ 3 t ( m o d   998244353 ) 3^{sp}\equiv 3^t (mod\,998244353) 3sp3t(mod998244353)又变成 s p ≡ t ( m o d   998244352 ) sp\equiv t(mod\,998244352) spt(mod998244352) 这里用扩展欧几里得定理求出 s s s即可,答案就是 3 s p 3^{sp} 3sp

    三.Code

    #include <cstdio> #include <cstring> #include <iostream> #include <map> #include <cmath> using namespace std; #define M 105 #define LL long long const LL mod = 998244353; int k, n; LL b[M], m; map <LL, LL> mp; struct matrix{ LL jz[M][M]; matrix clear (int flag){ if (! flag){ memset (jz, 0, sizeof jz); } else{ for (int i = 1; i <= k; i ++) for (int j = 1; j <= k; j ++) jz[i][j] = (i == j) ? 1 : 0; } } matrix operator * (const matrix& rhs) const{ matrix fina; fina.clear(0); for (int i = 1; i <= k; i ++) for (int j = 1; j <= k; j ++) for (int z = 1; z <= k; z ++) fina.jz[i][j] = (fina.jz[i][j] + jz[i][z] * rhs.jz[z][j] % (mod - 1)) % (mod - 1); return fina; } }A, B; matrix qkpow1 (matrix x, LL y){ matrix fina; fina.clear(1); while (y){ if (y & 1) fina = fina * x; x = x * x; y >>= 1; } return fina; } LL qkpow2 (LL x, LL y){ LL res = 1; while (y){ if (y & 1) res = res * x % mod; x = x * x % mod; y >>= 1; } return res; } LL bsgs (LL a, LL b){ mp.clear(); mp[1] = 0; LL sqt = ceil (sqrt (mod - 1)), t1 = 1, t2 = 1; for (int i = 1; i < sqt; i ++){ t1 = t1 * a % mod; mp[t1 * b % mod] = 1ll * i; } t1 = t1 * a % mod; for (int i = 1; i <= sqt; i ++){ t2 = t1 * t2 % mod; if (mp[t2]) return (1ll * i * sqt - mp[t2]); } } LL get_gcd (LL x, LL y){ if (! y) return x; return get_gcd (y, x % y); } void exgcd (LL &x, LL &y, LL a, LL b){ if (! b){ x = 1, y = 0; return ; } exgcd (y, x, b, a % b); y -= a / b * x; } int main (){ scanf ("%d", &k); for (int i = 1; i <= k; i ++) scanf ("%lld", &b[i]); scanf ("%d %lld", &n, &m); A.jz[1][k] = 1; for (int i = 1; i <= k; i ++) B.jz[i][k] = b[k - i + 1]; for (int i = 1; i < k; i ++) B.jz[i + 1][i] = 1; A = A * qkpow1 (B, n - k); LL p = A.jz[1][k], t = bsgs (3, m); if (t % get_gcd (p, mod - 1)) printf ("-1\n"); else{ LL gcd = get_gcd (p, mod - 1); LL x, y, b = mod - 1; p /= gcd, t /= gcd, b /= gcd; exgcd (x, y, p, b); x = (x % (mod - 1) + mod - 1) % (mod - 1); x = x * t % (mod - 1); printf ("%lld\n", qkpow2 (3, x)); } return 0; }

    Thanks!

    Processed: 0.031, SQL: 9