pandas读取和更换单个值,单列,单行,多列,多行【loc、iloc、at、iat的用法】
一、取出单个值和更换单个值
import pandas as pd
df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
print("--------更换单个值----------")
# loc和iloc 可以更换单行、单列、多行、多列的值
df1.loc[0,'age']=25 # 思路:先用loc找到要更改的值,再用赋值(=)的方法实现更换值
df1.iloc[0,2]=25 # iloc:用索引位置来查找
# at 、iat只能更换单个值
df1.at[0,'age']=25 # iat 用来取某个单值,参数只能用数字索引
df1.iat[0,2]=25 # at 用来取某个单值,参数只能用index和columns索引名称
print(df1)
#loc和iloc也可以去单个值,是一个列表
df1.loc[0, 'age'].values[][]
df1.iloc[0, 2].values[][]
如提取第1行,第2列的值:
df.iloc[[0],[1]]
则会返回一个df,即有字段名和行号。
如果用values属性取值:
1 df.iloc[[0],[1]].values
返回的值会是列表,而且是嵌套列表:
[[值]]
因此,正确的写法是:
1 df.iloc[[0],[1]].values[0][0]
二、插入新增列和行
import pandas as pd
df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])
print("----------在最后新增一列---------------")
print("-------案例1----------")
# 在数据框最后加上score一列,元素值分别为:80,98,67,90
df1['score']=[80,98,67,90] # 增加列的元素个数要跟原数据列的个数一样
print(df1)
print("-------案例2----------")
print("---------在指定位置新增列:用insert()--------")
# 在gender后面加一列城市
# 在具体某个位置插入一列可以用insert的方法
# 语法格式:列表.insert(index, obj)
# index --->对象 obj 需要插入的索引位置。
# obj ---> 要插入列表中的对象(列名)
col_name=df1.columns.tolist() # 将数据框的列名全部提取出来存放在列表里
print(col_name)
col_name.insert(2,'city') # 在列索引为2的位置插入一列,列名为:city,刚插入时不会有值,整列都是NaN
df1=df1.reindex(columns=col_name) # DataFrame.reindex() 对原行/列索引重新构建索引值
df1['city']=['北京','山西','湖北','澳门'] # 给city列赋值
print(df1)
print("----------新增行---------------")
# 重要!!先创建一个DataFrame,用来增加进数据框的最后一行
new=pd.DataFrame({'name':'lisa',
'gender':'F',
'city':'北京',
'age':19,
'score':100},
index=[1]) # 自定义索引为:1 ,这里也可以不设置index
print(new)
print("-------在原数据框df1最后一行新增一行,用append方法------------")
df1=df1.append(new,ignore_index=True) # ignore_index=True,表示不按原来的索引,从0开始自动递增
print(df1)
结果图: