链表 第二部分:双向链表,单向的环形链表,约瑟夫问题,Josephu

    科技2023-09-21  98

    双向链表

    管理单向链表的缺点分析:

    单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。单向链表不能自我删除,需要靠辅助节点,而双向链表,则可以自我删除,所以前面我们单链表删除时节点,总是找到temp,temp 是待删除节点的前一个节点(认真体会).

    双向链表应用实例(增删改)

    双向链表的操作分析和实现: 使用带head 头的双向链表实现–水浒英雄排行榜 对上图的说明: 分析双向链表的遍历,添加,修改,删除的操作思路===》代码实现

    遍历:方和单链表一样,只是可以向前,也可以向后查找

    添加(默认添加到双向链表的最后): 第一种无序: (1) 先找到双向链表的最后这个节点 (2) temp.next = newHeroNode (3) newHeroNode.pre = temp;(和单链表比改变的地方) 第二种有序: (1)新的节点.next = temp.next(重新连接,使断开数据1,4的连接线并且连接数据2,4) (2) 将temp.next = 新的节点(连接数据1和2) (3)newHeroNode.pre = temp;(和单链表比改变的地方)

    修改思路和原来的单向链表一样.

    删除:(如图所示) (1) 因为是双向链表,因此,我们可以实现自我删除某个节点 (2) 直接找到要删除的这个节点,比如temp (3) temp.pre.next = temp.next (4) temp.next.pre = temp.pre;

    双向链表的代码实现

    public static void main(String[] args) { // 测试 System.out.println("双向链表的测试"); // 先创建节点 HeroNode2 hero1 = new HeroNode2(1, "宋江", "及时雨"); HeroNode2 hero2 = new HeroNode2(2, "卢俊义", "玉麒麟"); HeroNode2 hero3 = new HeroNode2(3, "吴用", "智多星"); HeroNode2 hero4 = new HeroNode2(4, "林冲", "豹子头"); // 创建一个双向链表 DoubleLinkedList doubleLinkedList = new DoubleLinkedList(); // doubleLinkedList.add(hero1); // doubleLinkedList.add(hero2); // doubleLinkedList.add(hero3); // doubleLinkedList.add(hero4); // 加入按照编号的顺序 doubleLinkedList.addByOrder(hero1); doubleLinkedList.addByOrder(hero4); doubleLinkedList.addByOrder(hero2); doubleLinkedList.addByOrder(hero3); doubleLinkedList.list(); // 修改 HeroNode2 newHeroNode = new HeroNode2(4, "公孙胜", "入云龙"); doubleLinkedList.update(newHeroNode); System.out.println("修改后的链表情况"); doubleLinkedList.list(); // 删除 doubleLinkedList.del(3); System.out.println("删除后的链表情况~~"); doubleLinkedList.list(); } } // 创建一个双向链表的类 class DoubleLinkedList { // 先初始化一个头节点, 头节点不要动, 不存放具体的数据 private HeroNode2 head = new HeroNode2(0, "", ""); // 返回头节点 public HeroNode2 getHead() { return head; } // 遍历双向链表的方法 // 显示链表[遍历] public void list() { // 判断链表是否为空 if (head.next == null) { System.out.println("链表为空"); return; } // 因为头节点,不能动,因此我们需要一个辅助变量来遍历 HeroNode2 temp = head.next; while (true) { // 判断是否到链表最后 if (temp == null) { break; } // 输出节点的信息 System.out.println(temp); // 将temp后移, 一定小心 temp = temp.next; } } // 添加一个节点到双向链表的最后. public void add(HeroNode2 heroNode) { // 因为head节点不能动,因此我们需要一个辅助遍历 temp HeroNode2 temp = head; // 遍历链表,找到最后 while (true) { // 找到链表的最后 if (temp.next == null) {// break; } // 如果没有找到最后, 将将temp后移 temp = temp.next; } // 当退出while循环时,temp就指向了链表的最后 // 形成一个双向链表 temp.next = heroNode; heroNode.pre = temp; } public void addByOrder(HeroNode2 heroNode) { // 因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置 // 因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了 HeroNode2 temp = head; boolean flag = false; // flag标志添加的编号是否存在,默认为false while (true) { if (temp.next == null) {// 说明temp已经在链表的最后 break; // } if (temp.next.no > heroNode.no) { // 位置找到,就在temp的后面插入 break; } else if (temp.next.no == heroNode.no) {// 说明希望添加的heroNode的编号已然存在 flag = true; // 说明编号存在 break; } temp = temp.next; // 后移,遍历当前链表 } // 判断flag 的值 if (flag) { // 不能添加,说明编号存在 System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no); } else { // 插入到链表中, temp的后面 heroNode.next = temp.next; temp.next = heroNode; heroNode.pre = temp; } } // 修改一个节点的内容, 可以看到双向链表的节点内容修改和单向链表一样 // 只是 节点类型改成 HeroNode2 public void update(HeroNode2 newHeroNode) { // 判断是否空 if (head.next == null) { System.out.println("链表为空~"); return; } // 找到需要修改的节点, 根据no编号 // 定义一个辅助变量 HeroNode2 temp = head.next; boolean flag = false; // 表示是否找到该节点 while (true) { if (temp == null) { break; // 已经遍历完链表 } if (temp.no == newHeroNode.no) { // 找到 flag = true; break; } temp = temp.next; } // 根据flag 判断是否找到要修改的节点 if (flag) { temp.name = newHeroNode.name; temp.nickname = newHeroNode.nickname; } else { // 没有找到 System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no); } } // 从双向链表中删除一个节点, // 说明 // 1 对于双向链表,我们可以直接找到要删除的这个节点 // 2 找到后,自我删除即可 public void del(int no) { // 判断当前链表是否为空 if (head.next == null) {// 空链表 System.out.println("链表为空,无法删除"); return; } HeroNode2 temp = head.next; // 辅助变量(指针) boolean flag = false; // 标志是否找到待删除节点的 while (true) { if (temp == null) { // 已经到链表的最后 break; } if (temp.no == no) { // 找到的待删除节点的前一个节点temp flag = true; break; } temp = temp.next; // temp后移,遍历 } // 判断flag if (flag) { // 找到 // 可以删除 // temp.next = temp.next.next;[单向链表] temp.pre.next = temp.next; // 这里我们的代码有问题? // 如果是最后一个节点,就不需要执行下面这句话,否则出现空指针 if (temp.next != null) { temp.next.pre = temp.pre; } } else { System.out.printf("要删除的 %d 节点不存在\n", no); } } } // 定义HeroNode2 , 每个HeroNode 对象就是一个节点 class HeroNode2 { public int no; public String name; public String nickname; public HeroNode2 next; // 指向下一个节点, 默认为null public HeroNode2 pre; // 指向前一个节点, 默认为null // 构造器 public HeroNode2(int no, String name, String nickname) { this.no = no; this.name = name; this.nickname = nickname; } // 为了显示方法,我们重新toString @Override public String toString() { return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]"; } }

    单向环形链表

    单向环形链表介绍

    单向环形链表应用场景

    Josephu(约瑟夫、约瑟夫环) 问题

    Josephu 问题为:设编号为1,2,… n 的n 个人围坐一圈,约定编号为k(1<=k<=n)的人从1 开始报数,数到m 的那个人出列,它的下一位又从1 开始报数,数到m 的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。

    约瑟夫问题的示意图

    Josephu 问题为:设编号为1,2,… n的n个人围坐一圈,约定编号为k(1<=k<=n)的人从1开始报数,数到m 的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。 n = 5 , 即有5个人 k = 1, 从第一个人开始报数 m = 2, 数2下 出圈的顺序: 2->4->1->5->3

    提示:

    用一个不带头结点的循环链表来处理Josephu 问题:先构成一个有n 个结点的单循环链表,然后由k 结点起从1 开始计数,计到m 时,对应结点从链表中删除,然后再从被删除结点的下一个结点又从1 开始计数,直到最后一个结点从链表中删除算法结束。

    约瑟夫问题-创建环形链表的思路图解(添加,遍历)

    构建一个单向的环形链表思路

    先创建第一个节点, 让 first 指向该节点,并形成环形 (First指头不能动,因为遍历和创建的时候都需要尾指头所以不能动)后面当我们每创建一个新的节点,就把该节点,加入到已有的环形链表中即可. 代码: if (i == 1) { first = boy; first.setNext(first); // 构成环 curBoy = first; // 让curBoy指向第一个小孩 } else { curBoy.setNext(boy);// boy.setNext(first);// curBoy = boy;//向后移 }

    遍历环形链表

    先让一个辅助指针(变量) curBoy,指向first节点然后通过一个while循环遍历 该环形链表即可 curBoy.next == first 结束

    约瑟夫问题-小孩出圈的思路分析图

    根据用户的输入,生成一个小孩出圈的顺序 n = 5 , 即有5个人 k = 1, 从第一个人开始报数 m = 2, 数2下

    需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点. 补充: 小孩报数前,先让 first 和 helper 移动 k - 1次 (从第几个开始数,因为本来就在1了,所以k-1)当小孩报数时,让first 和 helper 指针同时 的移动 m - 1 次 (自己先喊了一次使用移动少一次)这时就可以将first 指向的小孩节点 出圈 first = first .next helper.next = first 原来first 指向的节点就没有任何引用,就会被回收 出圈的顺序:2->4->1->5->3

    代码实现

    public class Josepfu { public static void main(String[] args) { // 测试一把看看构建环形链表,和遍历是否ok CircleSingleLinkedList circleSingleLinkedList = new CircleSingleLinkedList(); circleSingleLinkedList.addBoy(125);// 加入5个小孩节点 circleSingleLinkedList.showBoy(); //测试一把小孩出圈是否正确 circleSingleLinkedList.countBoy(10, 20, 125); // 2->4->1->5->3 //String str = "7*2*2-5+1-5+3-3"; } } // 创建一个环形的单向链表 class CircleSingleLinkedList { // 创建一个first节点,当前没有编号 private Boy first = null; // 添加小孩节点,构建成一个环形的链表 public void addBoy(int nums) { // nums 做一个数据校验 if (nums < 1) { System.out.println("nums的值不正确"); return; } Boy curBoy = null; // 辅助指针,帮助构建环形链表 // 使用for来创建我们的环形链表 for (int i = 1; i <= nums; i++) { // 根据编号,创建小孩节点 Boy boy = new Boy(i); // 如果是第一个小孩 if (i == 1) { first = boy; first.setNext(first); // 构成环 curBoy = first; // 让curBoy指向第一个小孩 } else { curBoy.setNext(boy);// boy.setNext(first);// curBoy = boy; } } } // 遍历当前的环形链表 public void showBoy() { // 判断链表是否为空 if (first == null) { System.out.println("没有任何小孩~~"); return; } // 因为first不能动,因此我们仍然使用一个辅助指针完成遍历 Boy curBoy = first; while (true) { System.out.printf("小孩的编号 %d \n", curBoy.getNo()); if (curBoy.getNext() == first) {// 说明已经遍历完毕 break; } curBoy = curBoy.getNext(); // curBoy后移 } } // 根据用户的输入,计算出小孩出圈的顺序 /** * * @param startNo * 表示从第几个小孩开始数数 * @param countNum * 表示数几下 * @param nums * 表示最初有多少小孩在圈中 */ public void countBoy(int startNo, int countNum, int nums) { // 先对数据进行校验 if (first == null || startNo < 1 || startNo > nums) { System.out.println("参数输入有误, 请重新输入"); return; } // 创建要给辅助指针,帮助完成小孩出圈 Boy helper = first; // 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点 while (true) { if (helper.getNext() == first) { // 说明helper指向最后小孩节点 break; } helper = helper.getNext(); } //小孩报数前,先让 first 和 helper 移动 k - 1次 for(int j = 0; j < startNo - 1; j++) { first = first.getNext(); helper = helper.getNext(); } //当小孩报数时,让first 和 helper 指针同时 的移动 m - 1 次, 然后出圈 //这里是一个循环操作,直到圈中只有一个节点 while(true) { if(helper == first) { //说明圈中只有一个节点 break; } //让 first 和 helper 指针同时 的移动 countNum - 1 for(int j = 0; j < countNum - 1; j++) { first = first.getNext(); helper = helper.getNext(); } //这时first指向的节点,就是要出圈的小孩节点 System.out.printf("小孩%d出圈\n", first.getNo()); //这时将first指向的小孩节点出圈 first = first.getNext(); helper.setNext(first); // } System.out.printf("最后留在圈中的小孩编号%d \n", first.getNo()); } } // 创建一个Boy类,表示一个节点 class Boy { private int no;// 编号 private Boy next; // 指向下一个节点,默认null public Boy(int no) { this.no = no; } public int getNo() { return no; } public void setNo(int no) { this.no = no; } public Boy getNext() { return next; } public void setNext(Boy next) { this.next = next; } }
    Processed: 0.021, SQL: 8