pandas第四章——变形

    科技2023-09-28  81

    ⼀、透视表

    piovt(功能较少)

    展开

    df=pd.read_csv(r'data\table.csv') df.pivot(index='ID',columns='Gender',values='Height').head() Gender F M ID 1101 NaN 173.0 1102 192.0 NaN 1103 NaN 186.0 1104 167.0 NaN 1105 159.0 NaN

    pivot_table

    功能更多,速度更慢

    pd.pivot_table(df,index='ID',columns='Gender',values='Height').head() Gender F M ID 1101 NaN 173.0 1102 192.0 NaN 1103 NaN 186.0 1104 167.0 NaN 1105 159.0 NaN

    1.aggfunc

    对组内进行聚合统计

    pd.pivot_table(df,index='School',columns='Gender',values='Height',aggfunc=['mean','sum']).head() mean sum Gender F M F M School S_1 173.125000 178.714286 1385 1251 S_2 173.727273 172.000000 1911 1548

    2.margins

    汇总边际状态

    pd.pivot_table(df,index='School',columns='Gender',values='Height',aggfunc=['mean','sum'],margins=True).head() mean sum Gender F M All F M All School S_1 173.125000 178.714286 175.733333 1385 1251 2636 S_2 173.727273 172.000000 172.950000 1911 1548 3459 All 173.473684 174.937500 174.142857 3296 2799 6095

    3.行、列、值都可为多级索引

    pd.pivot_table(df,index=['School','Class'], columns=['Gender','Address'], values=['Height','Weight']) Height ... Weight Gender F M ... F M Address street_1 street_2 street_4 street_5 street_6 street_7 street_1 street_2 ... street_6 street_7 street_1 street_2 street_4 street_5 street_6 street_7 School Class ... S_1 C_1 NaN 179.5 159.0 NaN NaN NaN 173.0 186.0 ... NaN NaN 63.0 82.0 NaN NaN NaN NaN C_2 NaN NaN 176.0 162.0 167.0 NaN NaN NaN ... 63.0 NaN NaN NaN NaN 68.0 53.0 NaN C_3 175.0 NaN NaN 187.0 NaN NaN NaN 195.0 ... NaN NaN NaN 70.0 68.0 NaN NaN 82.0 S_2 C_1 NaN NaN NaN 159.0 161.0 NaN NaN NaN ... 61.0 NaN NaN NaN 71.0 NaN NaN 84.0 C_2 NaN NaN NaN NaN NaN 188.5 175.0 NaN ... NaN 76.5 74.0 NaN 91.0 100.0 NaN NaN C_3 NaN NaN 157.0 NaN 164.0 190.0 NaN NaN ... 81.0 99.0 NaN NaN 73.0 88.0 NaN NaN C_4 NaN 176.0 NaN NaN 175.5 NaN NaN NaN ... 57.0 NaN NaN NaN NaN NaN NaN 82.0 [7 rows x 24 columns]

    crosstab(交叉表)

    典型用途分组统计(暂时不支持分组统计)

    pd.crosstab(index=df['Address'],columns=df['Gender']) Gender F M Address street_1 1 2 street_2 4 2 street_4 3 5 street_5 3 3 street_6 5 1 street_7 3 3

    1.values和aggfunc

    分组对数据进行聚合操作,这两个参数必须成对出现

    pd.crosstab(index=df['Address'],columns=df['Gender'],values=1,aggfunc='count') Gender F M Address street_1 1 2 street_2 4 2 street_4 3 5 street_5 3 3 street_6 5 1 street_7 3 3

    二、其他变形方法

    melt

    将展开的数据压缩

    pivoted=df.pivot(index='ID',columns='Gender',values='Math').head() stacked=pivoted.reset_index().melt(id_vars=['ID'],value_vars=['F','M'],value_name='Math').dropna().set_index('ID').sort_index() Gender Math ID 1101 M 34.0 1102 F 32.5 1103 M 87.2 1104 F 80.4 1105 F 84.8

    压缩与展开

    1.stack

    压缩,两个参数level和dropna 可看做将横向的索引放到纵向,类似melt,参数level可指定变化的列索引是哪⼀层

    df_s = pd.pivot_table(df,index=['Class','ID'],columns='Gender',values=['Height','Weight']) df_stacked = df_s.stack() df_stacked.groupby('Class').head(2) Height Weight Class ID Gender C_1 1101 M 173.0 63.0 1102 F 192.0 73.0 C_2 1201 M 188.0 68.0 1202 F 176.0 94.0 C_3 1301 M 161.0 68.0 1302 F 175.0 57.0 C_4 2401 F 192.0 62.0 2402 M 166.0 82.0

    2. unstack

    功能类似pivot_table

    df_stacked.unstack() df_stacked.unstack().equals(df_s) True

    三、哑变量与因子化

    1. Dummy Variable(哑变量)

    df_d = df[['Class','Gender','Weight']]

    将上面的表格前两列转为哑变量

    pd.get_dummies(df_d[['Class','Gender']]).head() Class_C_1 Class_C_2 Class_C_3 Class_C_4 Gender_F Gender_M 0 1 0 0 0 0 1 1 1 0 0 0 1 0 2 1 0 0 0 0 1 3 1 0 0 0 1 0 4 1 0 0 0 1 0

    2. factorize方法

    用于自然数编码并且缺失值会被记做-1,其中sort参数表示是否排序后赋值

    codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b'], sort=True) display(codes) display(uniques) [ 1 -1 0 2 1] ['a' 'b' 'c']

    练习一

    a

    res=pd.pivot_table(df,index=['State','COUNTY','SubstanceName'],columns='YYYY',values='DrugReports',fill_value='-') YYYY 2010 2011 2012 2013 2014 2015 2016 2017 State COUNTY SubstanceName KY ADAIR Buprenorphine - 3 5 4 27 5 7 10 Codeine - - 1 - - - - 1 Fentanyl - - 1 - - - - - Heroin - - 1 2 - 1 - 2 Hydrocodone 6 9 10 10 9 7 11 3 res.reset_index().rename_axis(columns={'YYYY':''}) State COUNTY SubstanceName 2010 2011 2012 2013 2014 2015 2016 2017 0 KY ADAIR Buprenorphine - 3 5 4 27 5 7 10 1 KY ADAIR Codeine - - 1 - - - - 1 2 KY ADAIR Fentanyl - - 1 - - - - - 3 KY ADAIR Heroin - - 1 2 - 1 - 2 4 KY ADAIR Hydrocodone 6 9 10 10 9 7 11 3

    b

    melted = result.melt(id_vars=result.columns[:3],value_vars=result.columns[-8:],var_name='YYYY',value_name='DrugReports').query('DrugReports != "-"') res = melted.sort_values(by=['State','COUNTY','YYYY','SubstanceName']).reset_index().drop(columns='index') State COUNTY SubstanceName YYYY DrugReports 0 KY ADAIR Hydrocodone 2010 6 1 KY ADAIR Methadone 2010 1 2 KY ADAIR Buprenorphine 2011 3 3 KY ADAIR Hydrocodone 2011 9 4 KY ADAIR Morphine 2011 2

    练习二

    a

    pd.pivot_table(df,index=['日期','时间','维度','经度'],columns='方向',values=['烈度','深度','距离'],fill_value='-').stack(level=0).rename_axis(index={None:'地震参数'}) 方向 east north north_east north_west south south_east south_west west 日期 时间 维度 经度 参数 1912.08.09 12:29:00 AM 40.6 27.2 深度 - - - - - 16 - - 烈度 - - - - - 6.7 - - 距离 - - - - - 4.3 - - 1912.08.10 12:23:00 AM 40.6 27.1 深度 - - - - - - 15 - 烈度 - - - - - - 6 -

    b

    df_result = res.unstack().stack(0)[(~(res.unstack().stack(0)=='-')).any(1)].reset_index() df_result.columns.name=None df_result = df_result.sort_index(axis=1).astype({'深度':'float64','烈度':'float64','距离':'float64'}) 方向 日期 时间 深度 烈度 经度 维度 距离 0 south_east 1912.08.09 12:29:00 AM 16.0 6.7 27.2 40.6 4.3 1 south_west 1912.08.10 12:23:00 AM 15.0 6.0 27.1 40.6 2.0 2 south_west 1912.08.10 12:30:00 AM 15.0 5.2 27.1 40.6 2.0 3 south_east 1912.08.11 12:19:04 AM 30.0 4.9 27.2 40.6 4.3 4 south_west 1912.08.11 12:20:00 AM 15.0 4.5 27.1 40.6 2.0
    Processed: 0.009, SQL: 8