模板:
int e[N], ne[N]; // 链表元素及下个结点的地址 int head; // 头结点地址 int idx; // 可用位置 /** 创建含头结点的单链表 */ void init() { head = 0; // 头结点 e[0] = 0; // 值为链表长度 ne[0] = -1; idx = 1; // 第1个结点的下标从1开始 } /** 向链表头部插入一个数 */ void insert_head(int x) { e[idx] = x; ne[idx] = ne[head]; ne[head] = idx; idx++; e[0]++; // 链表长度+1 } /** 删除下标为k后面的数 */ void rem(int k) { ne[k] = ne[ne[k]]; e[0]--; // 链表长度-1 } /** 在下标为k的位置后插入一个数 */ void insert(int k, int x) { e[idx] = x; ne[idx] = ne[k]; ne[k] = idx; idx++; e[0]++; // 链表长度+1 } /** 遍历链表 */ void print() { for (int i = ne[head]; i != -1; i = ne[i]) cout << e[i] << " "; }说明:
采用含头结点的单链表,头结点存储链表长度元素从下标1开始存储模板:
const int N = 100010; int e[N], l[N], r[N], idx; /** 创建双链表(含头结点和尾结点) */ void init() { r[0] = 1; // 头结点 l[1] = 0; // 尾结点 idx = 2; } /** 在下标为k的结点右侧插入一个结点 */ void insert(int k, int x) { e[idx] = x; r[idx] = r[k]; l[idx] = k; l[r[k]] = idx; r[k] = idx; idx++; } /** 删除下标为k的结点 */ void remove(int k) { r[l[k]] = r[k]; l[r[k]] = l[k]; } /** 输出 */ void print() { for (int i = r[0]; i != 1; i = r[i]) printf("%d ", e[i]); }说明:
实现的双链表含头结点和尾结点,下标分别为0和1insert()函数可根据参数的选取实现在链表任意位置插入的功能(包括头插和尾插)遍历时从头结点的下一个位置开始(r[0]),直到遍历到尾结点(下标为0)模板:
int stk[N], tt = 0; // tt表示栈顶 // 向栈顶插入一个数 stk[ ++ tt] = x; // 从栈顶弹出一个数 tt -- ; // 栈顶的值 stk[tt]; // 判断栈是否为空 if (tt) {...} // 栈不为空说明:
栈从下标1开始存储元素栈指针tt的值可表示栈的实际长度模板:
// hh 表示队头,tt表示队尾 int q[N], hh = 0, tt = -1; // 向队尾插入一个数 q[ ++ tt] = x; // 从队头弹出一个数 hh ++ ; // 队头的值 q[hh]; // 判断队列是否为空 if (hh > tt){...}说明:
tt + 1 - hh可表示队列长度模板:
// hh 表示队头,tt表示队尾的后一个位置 int q[N], hh = 0, tt = 0; // 向队尾插入一个数 q[tt ++ ] = x; if (tt == N) tt = 0; // 从队头弹出一个数 hh ++ ; if (hh == N) hh = 0; // 队头的值 q[hh]; // 判断队列是否为空 if (hh == tt){...}说明:
这种实现方式与普通队列方式有点区别,在这里是先存入,后++,故tt初值为0可以把入队改成q[tt] = x; tt = (tt + 1) % N;,出队改成hh = (hh + 1) % N; x = q[hh];队满判断可用(tt + 1) % N == hh队列长度可用(tt - hh + N) % N求出用途:
为每个数找出满足如下条件的数:
在它左边距离最近比它小(大)模板:
int tt = 0; for (int i = 1; i <= n; i ++ ) { while (tt && check(stk[tt], i)) tt -- ; stk[ ++ tt] = i; }**说明:**时间复杂度由 O ( n 2 ) O(n^2) O(n2)降为 O ( n ) O(n) O(n)
用途:
找出滑动窗口中的最大值(最小值)
模板:
int hh = 0, tt = -1; for (int i = 0; i < n; i ++ ) { while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口 while (hh <= tt && check(q[tt], i)) tt -- ; q[ ++ tt] = i; }**说明:**时间复杂度由 O ( n k ) O(nk) O(nk)降为 O ( n + k ) O(n+k) O(n+k)
模板:
// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度 // 求模式串的Next数组: for (int i = 2, j = 0; i <= m; i ++ ) { while (j && p[i] != p[j + 1]) j = ne[j]; if (p[i] == p[j + 1]) j ++ ; ne[i] = j; } // 匹配 for (int i = 1, j = 0; i <= n; i ++ ) { while (j && s[i] != p[j + 1]) j = ne[j]; if (s[i] == p[j + 1]) j ++ ; if (j == m) { j = ne[j]; // 匹配成功后的逻辑 } }说明:
使用KMP算法时,起始下标为1字符串可用char数组保存,读入时用cin >> p + 1读取,表示从下标1开始写入字符串求next数组时,由于ne[1]初始化已经为0,故从2开始计算j == 0表示从头开始匹配模式串,匹配时用p[j + 1]比较用途:
快速存储和查找字符串集合,又称字典树
模板:
int son[N][26], cnt[N], idx; // 0号点既是根节点,又是空节点 // son[][]存储树中每个节点的子节点 // cnt[]存储以每个节点结尾的单词数量 // 插入一个字符串 void insert(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) son[p][u] = ++ idx; // 不存在结点则创建结点 p = son[p][u]; // 指向新结点 } cnt[p] ++ ; } // 查询字符串出现的次数 int query(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) return 0; p = son[p][u]; } return cnt[p]; }说明:
Trie树共享前缀,结点存在不代表根到该结点的字符串存在,需要看标记数组cntTrie树是多重集合son数组的第1维表示结点地址,要大于所有存储的字符串长度的和(不是字符串长度的最大值);第2维表示每个结点的最大分支数,一般取字符种类数(如小写字母有26个)cnt[i]表示以son[i]结点为末尾的字符串的个数模板:
int p[N]; //存储每个点的祖宗节点 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); // 路径压缩 return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) p[i] = i; // 合并a和b所在的两个集合: p[find(a)] = find(b); // 判断两个结点是否属于同一集合 if (find(a) == find(b)) {...}说明:
查找函数中使用了路径压缩优化并查集结构,使得每个非根结点直接连到根节点上,每棵树的深度不超过2判断两个数是否属于同一个集合等价于判断两个数的祖宗结点是否相同,即find(a) == find(b)合并操作本质是把其中一个祖宗结点连接到另一个祖宗结点上模板:
int p[N], size[N]; // 变动部分 //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; size[i] = 1; // 变动部分 } // 合并a和b所在的两个集合: int x = find(a), y = find(b); if (x != y) { p[x] = y; size[y] += size[x]; } // 判断两个结点是否属于同一集合 if (find(a) == find(b)) {...}说明:
size[x]存储的是以该结点为根的树的结点树在合并操作中,可以不必把find(a)和find(b)存入两个变量。因为第一次调用find()时会进行路径压缩,下一次调用就是O(1)复杂度了。但要注意先修改size再合并结点,二者顺序不可颠倒,因为结点含义会改变改变size时,要先判断两个集合是否为同一个在两个彼此不连通的连通图加上一条边连通二者,等价于把两个集合合并为了避免合并步骤中出现顺序问题,可以用两个变量表示,同时也减少了代码量模板:
int p[N], d[N]; //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) { int u = find(p[x]); // 先更新d[p[x]] d[x] += d[p[x]]; // 再更新d[x] p[x] = u; // 最后更新p[x] } return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; d[i] = 0; // 自身到自身的距离是0 } // 合并a和b所在的两个集合: p[find(a)] = find(b); d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量说明:
注意find函数语句的先后次序,次序不对可能会导致含义错误普通模板:
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1 int h[N], size;} void down(int u) { int t = u; if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2; if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1; if (u != t) { swap(u, t); down(t); } } void up(int u) { while (u / 2 && h[u] < h[u / 2]) { swap(u, u / 2); u >>= 1; } } // --------------------------------基本操作-------------------------------- // 0. 建堆 void init() { for (int i = n / 2; i; i -- ) down(i); } // 1. 插入一个数 void insert(int x) { h[++size] = x; up[size]; } // 2. 求最小值 int top() { return h[1]; } // 3. 删除最小值 void remove() { h[1] = h[size]; size--; down(1); } // 4. 删除任意位置的元素(STL没有) void remove(int k) { h[k] = h[size]; size--; down(k); up(k); } // 5. 修改任意位置的元素(STL没有) void update(int k, int x) { h[k] = x; down(k); up(k); }说明:
所有基本操作都可由up()和down()组合而成建堆的时间可以看做是 O ( n ) O(n) O(n),因为只有 n 2 \frac{n}{2} 2n个结点参与建堆,这些结点向下调整的次数至多为$2^{h-1}\times 1+2^{h-2}\times 2+2^1\times \left( d-2 \right) +2^0\times \left( d-1 \right) , 由 错 位 相 减 法 可 知 结 果 ,由错位相减法可知结果 ,由错位相减法可知结果\lt n$实现down时,注意t的含义是当前最小结点的下标,是变化的,而u是不变的,不要与u的含义弄混STL没有基本操作4和基本操作5,尽管它们实现时同时调用了down()和up(),但实际上只会执行其中一个建堆是从n/2逆着遍历到1加强模板:
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1 // ph[k]存储第k个插入的点在堆中的位置 // hp[k]存储堆中下标是k的点是第几个插入的 int h[N], ph[N], hp[N], size, m; // 加强swap void heap_swap(int a, int b) { swap(ph[hp[a]],ph[hp[b]]); swap(hp[a], hp[b]); swap(h[a], h[b]); } void down(int u) { int t = u; if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2; if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1; if (u != t) { heap_swap(u, t); // 加强swap down(t); } } void up(int u) { while (u / 2 && h[u] < h[u / 2]) { heap_swap(u, u / 2); // 加强swap u >>= 1; } } // --------------------------------基本操作-------------------------------- // 0. 建堆 void init() { for (int i = n / 2; i; i -- ) down(i); } // 1. 插入一个数 void insert(int x) { h[++size] = x; ph[++m] = size; // m为当前插入的序号 hp[size] = m; up[size]; } // 2. 求最小值 int top() { return h[1]; } // 3. 删除最小值 void remove() { heap_swap(1, siz); // 加强swap size--; down(1); } // 4. 删除第k次插入的元素(STL没有) void remove(int k) { k = ph[k]; heap_swap(k, size); // 加强swap size--; down(k); up(k); } // 5. 修改第k次插入的元素(STL没有) void update(int k, int x) { k = ph[k]; h[k] = x; down(k); up(k); }说明:
加强模板额外存储了插入记录ph,映射插入序号和元素在堆中的位置,同时构建了ph的逆映射hp,可根据堆中的下标反推插入序号所有swap改成加强版的heap_swap,因为要维护ph和hp在heap_swap中,由于参数是下标,但ph数组需要提供插入序号k,因此可用数组hp的值来作为ph的下标模板:
// (1) 拉链法 int h[N], e[N], ne[N], idx; // 向哈希表中插入一个数 void insert(int x) { int k = (x % N + N) % N; e[idx] = x; ne[idx] = h[k]; h[k] = idx ++ ; } // 在哈希表中查询某个数是否存在 bool find(int x) { int k = (x % N + N) % N; for (int i = h[k]; i != -1; i = ne[i]) if (e[i] == x) return true; return false; } // (2) 开放寻址法 const int null = 0x3f3f3f3f; int h[N]; memset(h, 0x3f, sizeof h); // 给h的每个字节初始化成0x3f,使得每个元素的值都是null // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 int find(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }说明:
(x % N + N) % N首先把x缩放到满足abs(x) < N,由于第一次求余的结果可能是负数,因此还要再进行一次求余用单链表实现拉链法用质数作为长度可以使得冲突最少(数学能证明)可以事先实现一个求质数的函数,算出比N大的最小质数,作为N的值离散化是哈希的特例,因为离散化要求相对顺序不变,而哈希没有要求哈希表的删除是通过标记实现的开放寻址法手动设定null的值,其值可根据题目给出的元素数值范围设计。例如元素值的绝对值 ≤ 1 0 9 \leq 10^9 ≤109,又知0x3FFFFFFF > 1 0 9 \gt 10^9 >109,但memset只能按字节赋值,故可考虑0x3F3F3F3F,经检验它 > 1 0 9 \gt 10^9 >109,故可使用memset(h, 0x3f, sizeof h);为数组元素“赋”初值null用途:
O(1)代价计算子串的哈希值
模板:
typedef unsigned long long ULL; ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64 const int P = 131; // 或13331 // 初始化 p[0] = 1; for (int i = 1; i <= n; i ++ ) { h[i] = h[i - 1] * P + str[i]; p[i] = p[i - 1] * P; } // 计算子串 str[l ~ r] 的哈希值 ULL get(int l, int r) { return h[r] - h[l - 1] * p[r - l + 1]; }说明:
取模的数选用 2 64 2^{64} 264,这样可用unsigned long long类型自动进行求余运算,因为该类型溢出等价于mod 2 64 2^{64} 264质数p可取经验值131或13331 s i s_i si取s[i]的ASCII值方法类似前缀和,只是这里还要额外乘上 p r − l + 1 p^{r-l+1} pr−l+1,具体过程如下图所示[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5VPyZJnn-1601998025057)(D:\Program_Data\Markdown\Acwing《算法基础课》第2章 数据结构.assets\字符串哈希.jpg)]
说明:
系统为某程序分配空间所需要的时间与空间大小无关,而与申请次数有关priority-queue默认是大根堆,可通过插入-x变成小根堆P.S. 部分内容来自y总的模板 如果大家有兴趣,可以去Acwing《算法基础课》看看 我在Acwing也分享了一份,欢迎去围观