分析自行车租赁随时间及天气变化的分布情况

    科技2024-06-04  81

    import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline bike=pd.read_csv("/home/ysc/数据分析/data/第十讲/bike.csv",encoding='utf-8') bike

    datetime租赁时间 season季节(1:春 2;夏。。)holiday假期:0非假期,1假期 workingday工作日:0工作日1非工作日 weather天气,数值越大天气越差 temp气温 atemp气温 humidity湿度 windspeed风速 casual普通用户 registered注册用户 count租赁自行车数量

    时间段与租赁的关系

    #数据清洗 bike.isnull().sum()

    将datetime数据类型转换为datetime类型

    bike['datetime']=pd.to_datetime(bike['datetime']) bike.dtypes

    将datetime设置为DataFrame的索引,这样就成为了时间序列数据

    # bike=bike.set_index('datetime') bike.head()

    探索数据–降采样到年份数据

    y_bike=bike.groupby(lambda x:x.year).mean() y_bike['count']

    y_bike['count'].plot(kind='bar')

    将数据重采样到月份

    m_bike=bike.resample('M',kind='period').mean() fig,axes=plt.subplots(2,1) #两行一列 m_bike['2011']['count'].plot(ax=axes[0],sharex=True) #贡献x轴 m_bike['2012']['count'].plot(ax=axes[1])

    分析每天和每小时的租赁数分布与天和时的关系–天和时单独存储

    bike['day']=bike.index.day bike['hour']=bike.index.hour bike.head()

    d_bike=bike.groupby('day')['count'].mean() d_bike

    d_bike.plot()

    h_bike=bike.groupby('hour')['count'].mean() h_bike.plot()

    分析天气对租车的影响

    weather_bike=bike.groupby('weather')['count'].mean() weather_bike.plot(kind='bar')

    Processed: 0.010, SQL: 8