整理的算法模板合集: ACM模板
不能算是Min_25筛,该模板只是在较短时间内求1e11~1e12内的素数和
#include <bits/stdc++.h> #define ll long long using namespace std; const int N = 1000010; int prime[N], id1[N], id2[N], flag[N], ncnt, m; ll g[N], sum[N], a[N], T; ll n; int ID(ll x) { return x <= T ? id1[x] : id2[n / x]; } ll calc(ll x) { return x * (x + 1) / 2 - 1; } ll f(ll x) { return x; } ll init(ll n){ T = sqrt(n + 0.5); for (int i = 2; i <= T; i++) { if (!flag[i]) prime[++ncnt] = i, sum[ncnt] = sum[ncnt - 1] + i; for (int j = 1; j <= ncnt && i * prime[j] <= T; j++) { flag[i * prime[j]] = 1; if (i % prime[j] == 0) break; } } for (ll l = 1; l <= n; l = n / (n / l) + 1) { a[++m] = n / l; if (a[m] <= T) id1[a[m]] = m; else id2[n / a[m]] = m; g[m] = calc(a[m]); } for (int i = 1; i <= ncnt; i++) for (int j = 1; j <= m && (ll)prime[i] * prime[i] <= a[j]; j++) g[j] = g[j] - (ll)prime[i] * (g[ID(a[j] / prime[i])] - sum[i - 1]); } ll solve(ll x){ if(x<=1){return x;} return n=x,init(n),g[ID(n)]; } int main() { while(1) { memset(g,0,sizeof(g)); memset(a,0,sizeof(a)); memset(sum,0,sizeof(sum)); memset(prime,0,sizeof(prime)); memset(id1,0,sizeof(id1)); memset(id2,0,sizeof(id2)); memset(flag,0,sizeof(flag)); ncnt=m=0; scanf("%lld", &n); printf("%lld\n", solve(n)); } }