在 Python 里有两类函数:
第一类:用 def 关键词定义的正规函数第二类:用 lambda 关键词定义的匿名函数Python 使用 lambda 关键词来创建匿名函数,而非def关键词,它没有函数名,其语法结构如下:
lambda argument_list: expression
lambda - 定义匿名函数的关键词。argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。:- 冒号,在函数参数和表达式中间要加个冒号。expression - 只是一个表达式,输入函数参数,输出一些值。注意:
expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。 def sqr(x): return x ** 2 print(sqr) # <function sqr at 0x000000BABD3A4400> y = [sqr(x) for x in range(10)] print(y) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] lbd_sqr = lambda x: x ** 2 print(lbd_sqr) # <function <lambda> at 0x000000BABB6AC1E0> y = [lbd_sqr(x) for x in range(10)] print(y) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] sumary = lambda arg1, arg2: arg1 + arg2 print(sumary(10, 20)) # 30 func = lambda *args: sum(args) print(func(1, 2, 3, 4, 5)) # 15函数式编程 是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。 匿名函数的应用
【例子】非函数式编程 def f(x): for i in range(0, len(x)): x[i] += 10 return x x = [1, 2, 3] f(x) print(x) # [11, 12, 13] 【例子】函数式编程 def f(x): y = [] for item in x: y.append(item + 10) return y x = [1, 2, 3] f(x) print(x) # [1, 2, 3]匿名函数 常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:
参数是函数 (filter, map)返回值是函数 (closure)如,在 filter和map函数中的应用:
filter(function, iterable) 过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用list() 来转换。 odd = lambda x: x % 2 == 1 templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9]) print(list(templist)) # [1, 3, 5, 7, 9] map(function, *iterables) 根据提供的函数对指定序列做映射。 m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5]) print(list(m1)) # [1, 4, 9, 16, 25] m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]) print(list(m2)) # [3, 7, 11, 15, 19] 除了 Python 这些内置函数,我们也可以自己定义高阶函数。 def apply_to_list(fun, some_list): return fun(some_list) lst = [1, 2, 3, 4, 5] print(apply_to_list(sum, lst)) # 15 print(apply_to_list(len, lst)) # 5 print(apply_to_list(lambda x: sum(x) / len(x), lst)) # 3.0