贪心直接求即可
#define IO ios::sync_with_stdio(false);cin.tie();cout.tie(0) #pragma GCC optimize(2) #include<set> #include<map> #include<cmath> #include<queue> #include<string> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<unordered_map> using namespace std; typedef long long ll; typedef pair<int,int> pii; const ll mod=998244353; int main() { IO; int T=1; //cin>>T; while(T--) { ll n; cin>>n; ll a=n/2; a%=mod; cout<<((3*a*a%mod-3*a%mod+1)%mod+mod)%mod; } return 0; }真就化简式子呗??? d i s t ( x , y ) = d e p ( x ) + d e p ( y ) − 2 d e p ( l c a ( x , y ) ) dist(x,y)=dep(x)+dep(y)-2dep(lca(x,y)) dist(x,y)=dep(x)+dep(y)−2dep(lca(x,y)) 于是可知 ∑ x = 1 n ∑ y = 1 n d i s t 2 ( x , y ) = ∑ x = 1 n ∑ y = 1 n d e p 2 ( x ) + d e p 2 ( y ) + 2 d e p ( x ) d e p ( y ) + 4 d e p 2 ( l c a ( x , y ) ) − 4 d e p ( l c a ( x , y ) ) × ( d e p ( x ) + d e p ( y ) ) \sum_{x=1}^{n}\sum_{y=1}^{n}dist^2(x,y)=\sum_{x=1}^{n}\sum_{y=1}^{n}dep^2(x)+dep^2(y)+2dep(x)dep(y)+4dep^2(lca(x,y))-4dep(lca(x,y))×(dep(x)+dep(y)) x=1∑ny=1∑ndist2(x,y)=x=1∑ny=1∑ndep2(x)+dep2(y)+2dep(x)dep(y)+4dep2(lca(x,y))−4dep(lca(x,y))×(dep(x)+dep(y)) 对于前三项 ∑ x = 1 n ∑ y = 1 n d e p 2 ( x ) + d e p 2 ( y ) = 2 ∑ x = 1 n d e p 2 ( x ) \sum_{x=1}^{n}\sum_{y=1}^{n}dep^2(x)+dep^2(y)=2\sum_{x=1}^{n}dep^2(x) x=1∑ny=1∑ndep2(x)+dep2(y)=2x=1∑ndep2(x) 2 ∑ x = 1 n ∑ y = 1 n d e p ( x ) d e p ( y ) = 2 ∑ x = 1 n d e p ( x ) ∑ y = 1 n d e p ( y ) = 2 ( ∑ x = 1 n d e p ( x ) ) 2 2\sum_{x=1}^{n}\sum_{y=1}^{n}dep(x)dep(y)=2\sum_{x=1}^{n}dep(x)\sum_{y=1}^{n}dep(y)=2(\sum_{x=1}^{n}dep(x))^2 2x=1∑ny=1∑ndep(x)dep(y)=2x=1∑ndep(x)y=1∑ndep(y)=2(x=1∑ndep(x))2 对于后两项可以枚举公共祖先 ∑ x = 1 n ∑ y = 1 n d e p 2 ( l c a ( x , y ) ) = ∑ u = l c a ( x , y ) d e p 2 ( u ) × ( s z 2 ( u ) − ∑ j ∈ s o n ( u ) s z 2 ( j ) ) \sum_{x=1}^{n}\sum_{y=1}^{n}dep^2(lca(x,y))=\sum_{u=lca(x,y)}dep^2(u)×(sz^2(u)-\sum_{j\in son(u)}sz^2(j)) x=1∑ny=1∑ndep2(lca(x,y))=u=lca(x,y)∑dep2(u)×(sz2(u)−j∈son(u)∑sz2(j)) ∑ x = 1 n ∑ y = 1 n d e p ( l c a ( x , y ) ) × ( d e p ( x ) + d e p ( y ) ) = ∑ u = l c a ( x , y ) [ 2 ∑ j ∈ s o n ( u ) s u m ( j ) ( s z ( u ) − s z ( j ) ) + 2 d e p ( u ) s z ( u ) ] \sum_{x=1}^{n}\sum_{y=1}^{n}dep(lca(x,y))×(dep(x)+dep(y))=\sum_{u=lca(x,y)}[2\sum_{j\in son(u)}sum(j)(sz(u)-sz(j))+2dep(u)sz(u)] x=1∑ny=1∑ndep(lca(x,y))×(dep(x)+dep(y))=u=lca(x,y)∑[2j∈son(u)∑sum(j)(sz(u)−sz(j))+2dep(u)sz(u)]
#define IO ios::sync_with_stdio(false);cin.tie();cout.tie(0) #pragma GCC optimize(2) #include<set> #include<map> #include<cmath> #include<queue> #include<string> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<unordered_map> using namespace std; typedef long long ll; typedef pair<int,int> pii; const int N=1000010; const ll mod=998244353; int h[N],e[2*N],ne[2*N],idx; ll dep[N],sum[N],sz[N]; ll res; int n; void add(int a,int b) { e[idx]=b; ne[idx]=h[a]; h[a]=idx++; } void dfs1(int u,int fa) { dep[u]=dep[fa]+1; sz[u]=1; sum[u]=dep[u]; for(int i=h[u];i!=-1;i=ne[i]) { int j=e[i]; if(j==fa) continue; dfs1(j,u); sz[u]+=sz[j]; sum[u]=(sum[u]+sum[j])%mod; } } void dfs2(int u,int fa) { ll s1=sz[u]*sz[u]%mod,s2=2*dep[u]*sz[u]%mod; for(int i=h[u];i!=-1;i=ne[i]) { int j=e[i]; if(j==fa) continue; dfs2(j,u); s1=(s1-sz[j]*sz[j]%mod)%mod; s2=(s2+2*sum[j]*(sz[u]-sz[j])%mod)%mod; } res=(res+4*s1*dep[u]%mod*dep[u])%mod; res=(res-4*s2*dep[u]%mod)%mod; } int main() { IO; int T=1; //cin>>T; while(T--) { memset(h,-1,sizeof h); cin>>n; for(int i=1;i<n;i++) { int a,b; cin>>a>>b; add(a,b),add(b,a); } dfs1(1,0); ll s=0; for(int i=1;i<=n;i++) { s=(s+dep[i])%mod; res=(res+2ll*n*dep[i]%mod*dep[i])%mod; } res=(res+2*s*s%mod)%mod; dfs2(1,0); res=(res%mod+mod)%mod; cout<<res<<'\n'; } return 0; }这就是数学的魅力吗?爱了爱了 要加油哦~