VID-视频目标检测

    科技2024-10-21  33

    VID-视频目标检测

    问题和背景

    前瞻 视频目标检测,顾名思义,属于目标检测的一个细分领域,虽然仅仅多了视频两个字,而且视频和图片还相似度较高,但是对比目标检测(下文简称OD)的火爆,视频目标检测(下文检测VID)研究的热度相对小很多,不过在2018-2019年,顶会文章逐渐变多,总的算下来,大约就30多篇,因此对于想在这个领域入门并且做一点成果的人,还是非常友好的。

    核心问题 这个领域的核心问题主要在于,对于视频中的单独一帧来说,可能会遭遇到运动模糊(motion blur),怪异的姿势(rare poses),遮挡(occlusion)等问题,当然这可能是由相机失焦(camera defocus)或者视频本身质量引起的,这是任务本身的问题。 另一方面,我认为这个领域起步比较晚,导致开源代码较少,细数之下,能用的仅仅有DFF、FGFA、SELSA、MEGA这几份,其中选择性也很小,前三者算一个派系,基于MXNET,MEGA是CVPR2020刚刚开源的,集成了DFF、FGFA、RDN、MEGA四种方法,基于pytorch的,所以对比OD和目标跟踪几十份开源代码,实在是有些尴尬。 最后,由于解决的问题十分单一,且方法的核心思路也比较单一,就是利用序列中的时空信息(spatial-temporal information across frames in a video)来加强单帧的学习,导致使用的方法其实有些内卷。

    总的来说好入门,但是难出彩啊!

    part 1 论文整理

    有开源的 MEGA (2020CVPR): Memory Enhanced Global-Local Aggregation for Video Object Detection paper code

    SSVD (2020 IEEE Transactions on Multimedia): Single Shot Video Object Detector paper code

    HVRNet (2020ECCV): Mining Inter-Video Proposal Relations for Video Object Detection papercode

    SELSA (2019ICCV): Sequence Level Semantics Aggregation for Video Object Detection paper code

    STMN (2018ECCV): Video object detection with an aligned spatial-temporal memory paper code

    DFF (2017CVPR): Deep Feature Flow for Video Recognition paper code

    FGFA (2017ICCV): Flow-guided feature aggregation for video object detection paper code

    没开源的 (2020TPAMI) Object Detection in Videos by High Quality Object Linking paper

    TCENet (2020AAAI): Temporal Context Enhanced Feature Aggregation for Video Object Detection paper

    STFA (2020ICASSP) :SPATIAL-TEMPORAL FEATURE AGGREGATION NETWORK FOR VIDEO OBJECT DETECTION paper

    LSTS (2020ECCV): Learning Where to Focus for Efficient Video Object Detection paper

    (2020ECCV) Video Object Detection via Object-level Temporal Aggregation paper

    (2020ECCV) CenterNet Heatmap Propagation for Real-time Video Object Detection paper

    DSFNet (2020ACMMM): Dual Semantic Fusion Network for Video Object Detection paper

    LRTR (2019ICCV): Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection paper

    OGEMN (2019ICCV): Object guided external memory network for video object detection paper

    RDN (2019ICCV): Relation distillation networks for video object detection paper

    PSLA (2019ICCV): Progressive Sparse Local Attention for Video Object Detection paper

    LWDN (2019AAAI): Video Object Detection with Locally-Weighted Deformable Neighbors paper

    THP (2018CVPR): Towards high performance video object detection paper

    STSN (2018ECCV): Object Detection in Video with Spatiotemporal Sampling Networks paper

    ST-Lattice (2018CVPR): Optimizing video object detection via a scale-time lattice. paper

    MANet (2018ECCV): Fully Motion-Aware Network for Video Object Detection paper

    TCNN (2017arxiv):T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos paper

    D&T (2017ICCV): Detect to track and track to detect paper

    Seq-nms (2016arxiv): Seq-nms for video object detection paper

    Impression Network (2017arxiv): Impression Network for Video Object Detection paper

    Processed: 0.013, SQL: 8