scipy中的稀疏矩阵coo

    科技2024-11-09  23

    coo_matrix

    COO优点:

    1:容易构造,比较容易转换成其他的稀疏矩阵存储格式(CSR等) 2:写程序可以将libsvm格式的数据转换成COO比较容易,应该是充当libsvm与其他稀疏矩阵存储格式转换的媒介。 3:支持相同的(row,col)坐标上存放多个值。

    COO缺点: 1:构建完成后不允许再插入或删除元素。不能进行常规矩阵运算。 2:不能直接进行科学计算和切片操作。

    适用场景: 加载数据文件时使用coo_matrix快速构建稀疏矩阵,然后调用to_csr()、to_csc()、to_dense()把它转换成CSR或稠密矩阵。

    csr_matrix

    比较标准,数值,列号,以及行偏移。 (相当于每行的首个元素在value中的index) row offset的数值个数是row + 1, 表示某行第一个元素在values中的位置,如5是第三行第一个元素,它在values中的index是4。

    优点: 1:高效地按行切片。 2:快速地计算矩阵与向量的内积。 3:高效地进行矩阵的算术运行,CSR + CSR、CSR * CSR等。

    缺点: 1:按列切片很慢(考虑CSC) 2:一旦构建完成后,再往里面添加或删除元素成本很高 3:CSR格式在存储稀疏矩阵时非零元素平均使用的字节数(Bytes per Nonzero Entry)最为稳定(float类型约为8.5,double类型约为12.5)。CSR格式常用于读入数据后进行稀疏矩阵计算。

    CSC

    CSC是和CSR相对应的一种方式,即按列压缩的意思。 以上图中矩阵为例: Values:[1 5 7 2 6 8 3 9 4] Row Indices:[0 2 0 1 3 1 2 2 3] Column Offsets:[0 2 5 7 9] https://blog.csdn.net/haoji007/article/details/105696394 lil dok,CSR 等等

    Processed: 0.010, SQL: 8