[Kaggle] Digit Recognizer 手写数字识别(神经网络)

    科技2024-11-20  34

    文章目录

    1. baseline2. 改进2.1 增加训练时间2.2 更改网络结构

    Digit Recognizer 练习地址

    相关博文: [Hands On ML] 3. 分类(MNIST手写数字预测) [Kaggle] Digit Recognizer 手写数字识别

    1. baseline

    导入包 import tensorflow as tf from tensorflow import keras # import keras import numpy as np %matplotlib inline import matplotlib.pyplot as plt import pandas as pd train = pd.read_csv('train.csv') y_train_full = train['label'] X_train_full = train.drop(['label'], axis=1) X_test = pd.read_csv('test.csv') 数据维度 X_train_full.shape (42000, 784)

    42000个训练样本,每个样本 28*28 展平后的像素值 784 个

    像素归一化,拆分训练集、验证集 X_valid, X_train = X_train_full[:8000] / 255.0, X_train_full[8000:] / 255.0 y_valid, y_train = y_train_full[:8000], y_train_full[8000:] 数据预览 from PIL import Image img = Image.fromarray(np.uint8(np.array(X_train_full)[0].reshape(28,28))) img.show() print(np.uint8(np.array(X_train_full)[0].reshape(28,28)))

    数字 1 的像素矩阵:

    [[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 255 94 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 191 250 253 93 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 123 248 253 167 10 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 247 253 208 13 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 207 253 235 77 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 209 253 253 88 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 254 253 238 170 17 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 23 210 254 253 159 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 16 209 253 254 240 81 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 27 253 253 254 13 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 20 206 254 254 198 7 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 168 253 253 196 7 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 20 203 253 248 76 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 22 188 253 245 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 103 253 253 191 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 89 240 253 195 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 15 220 253 253 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 94 253 253 253 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 89 251 253 250 131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 214 218 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]] 添加模型 model = keras.models.Sequential() # model.add(keras.layers.Flatten(input_shape=[784])) model.add(keras.layers.Dense(300, activation="relu")) model.add(keras.layers.Dense(100, activation="relu")) model.add(keras.layers.Dense(10, activation="softmax"))

    或者以下写法

    model = keras.models.Sequential([ # keras.layers.Flatten(input_shape=[784]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) 定义优化器,配置模型 opt = keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, decay=0.01) model.compile(loss="sparse_categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) 训练 history = model.fit(X_train, y_train, epochs=30, validation_data=(X_valid, y_valid)) ... Epoch 30/30 1063/1063 [==============================] - 2s 2ms/step - loss: 0.0927 - accuracy: 0.9748 - val_loss: 0.1295 - val_accuracy: 0.9643 模型参数 model.summary()

    输出:

    Model: "sequential_5" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_15 (Dense) (None, 300) 235500 _________________________________________________________________ dense_16 (Dense) (None, 100) 30100 _________________________________________________________________ dense_17 (Dense) (None, 10) 1010 ================================================================= Total params: 266,610 Trainable params: 266,610 Non-trainable params: 0 _________________________________________________________________ 绘制模型结构 from tensorflow.keras.utils import plot_model plot_model(model, './model.png', show_shapes=True)

    绘制训练曲线 pd.DataFrame(history.history).plot(figsize=(8, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) # set the vertical range to [0-1] plt.show()

    对测试集预测 y_pred = model.predict(X_test) pred = y_pred.argmax(axis=1).reshape(-1) print(pred.shape) image_id = pd.Series(range(1,len(pred)+1)) output = pd.DataFrame({'ImageId':image_id, 'Label':pred}) output.to_csv("submission_svc.csv", index=False)

    得分 : 0.95989

    2. 改进

    根据上面的准确率:

    ... Epoch 30/30 1063/1063 [==============================] - 2s 2ms/step - loss: 0.0927 - accuracy: 0.9748 - val_loss: 0.1295 - val_accuracy: 0.9643

    人类的准确率几乎是100%,我们的训练集准确率 97.48%,验证集准确率 96.43%,我们的模型存在高偏差

    参考, 超参数调试、正则化以及优化:https://michael.blog.csdn.net/article/details/108372707

    怎么办?

    2.1 增加训练时间

    训练次数更改为 epochs=100

    ... Epoch 100/100 1063/1063 [==============================] - 2s 2ms/step - loss: 0.0751 - accuracy: 0.9798 - val_loss: 0.1194 - val_accuracy: 0.9661

    得分 : 0.96296,比上面好 0.307%

    2.2 更改网络结构

    添加隐藏层 model = keras.models.Sequential() model.add(keras.layers.Dense(300, activation="relu")) model.add(keras.layers.Dense(100, activation="relu")) model.add(keras.layers.Dense(100, activation="relu")) # 增加一层 model.add(keras.layers.Dense(10, activation="softmax")) Epoch 100/100 1063/1063 [==============================] - 2s 2ms/step - loss: 0.0585 - accuracy: 0.9847 - val_loss: 0.1114 - val_accuracy: 0.9672

    得分 : 0.96546,比上面好 0.25%

    再添加隐藏层 model = keras.models.Sequential() model.add(keras.layers.Dense(300, activation="relu")) model.add(keras.layers.Dense(100, activation="relu")) model.add(keras.layers.Dense(100, activation="relu")) # 增加一层 model.add(keras.layers.Dense(50, activation="relu")) # 增加一层 model.add(keras.layers.Dense(10, activation="softmax")) Epoch 100/100 1063/1063 [==============================] - 2s 2ms/step - loss: 0.0544 - accuracy: 0.9860 - val_loss: 0.1039 - val_accuracy: 0.9700

    得分 : 0.96578,比上面好 0.032%

    增加隐藏单元数量、使用 batch_size = 128、训练250轮 DROP_OUT = 0.3 model = keras.models.Sequential() model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dense(10, activation="softmax")) history = model.fit(X_train, y_train, epochs=250, batch_size=128, validation_data=(X_valid, y_valid)) Epoch 250/250 266/266 [==============================] - 3s 10ms/step - loss: 9.7622e-08 - accuracy: 1.0000 - val_loss: 0.2358 - val_accuracy: 0.9766

    得分 : 0.97442,比上面好 0.864%

    使用 dropout 随机使一些神经元失效,是一种正则化方法 DROP_OUT = 0.3 model = keras.models.Sequential() model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dropout(DROP_OUT)) # dropout 正则化 model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dropout(DROP_OUT)) model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dropout(DROP_OUT)) model.add(keras.layers.Dense(500, activation="relu")) model.add(keras.layers.Dropout(DROP_OUT)) model.add(keras.layers.Dense(10, activation="softmax")) history = model.fit(X_train, y_train, epochs=250, batch_size=128, validation_data=(X_valid, y_valid)) Epoch 250/250 266/266 [==============================] - 4s 16ms/step - loss: 0.0171 - accuracy: 0.9940 - val_loss: 0.0928 - val_accuracy: 0.9779

    得分 : 0.97546,比上面好 0.104%

    实验对比汇总: 模型/准确率(%)训练集验证集测试集简单模型97.4896.4395.989增加训练次数97.9896.6196.296(+0.307%)增加隐藏层98.4796.7296.546(+0.25%)再增加隐藏层98.6097.0096.578(+0.032%)增加隐藏单元数量、batch_size = 128、训练250轮10097.6697.442(+0.864%)使用 dropout 随机失活(正则化)99.4097.7997.546(+0.104%)

    目前最好得分,可以在 kaggle 排到1597名。


    我的博客地址 https://michael.blog.csdn.net/

    长按或扫码关注我的公众号(Michael阿明),一起加油、一起学习进步!

    Processed: 0.009, SQL: 8