pytorch+CNN经典模型→mnist识别

    科技2024-11-23  23

    参考书籍:《深度学习框架pytorch快速开发与实战》

    1、导入常用包

    import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt

    2、设置超参数

    BATCH_SIZE = 50 EPOCH = 3 LR = 0.001

    3、数据集下载及处理

    (转化为pytorch处理的tensor格式)

    train_data = torchvision.datasets.MNIST( root = './mnist', train = True, transform = torchvision.transforms.ToTensor(), download = True ) test_data = torchvision.datasets.MNIST( root = './mnist', train = False, transform = torchvision.transforms.ToTensor(), download = True ) print(train_data.data.size()) print(test_data.data.size())

    DataLoader可以把数据集分割为batch_size大小

    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) #test_x和test_y,维度上的一些处理 test_x = test_data.data.reshape(-1,1,28,28) #1是通道数,卷积核数量 test_x = torch.true_divide(test_x,255) #归一化,像素255 test_y = test_data.targets

    4、模型构建

    class CNN(nn.Module): def __init__(self): super(CNN,self).__init__(); #继承Module self.conv1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2), #默认bias=True nn.ReLU(), nn.MaxPool2d(kernel_size=2) #pooling ) self.conv2 = nn.Sequential( nn.Conv2d(16,32,5,1,2), #参见conv1中的参数顺序 nn.ReLU(), nn.MaxPool2d(2) ) self.out = nn.Linear(32*7*7, 10) #input_feature,out_feature,bias=True or False def forward(self,x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0),-1) #linear的输入输出都是一维 output = self.out(x) return output

    5、实例化模型

    cnn = CNN() optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) loss_function = nn.CrossEntropyLoss() #交叉熵

    6、训练模型、评价指标

    for epoch in range(EPOCH): for step,(x,y) in enumerate(train_loader): b_x = Variable(x) b_y = Variable(y) output = cnn(b_x) loss = loss_function(output,y) optimizer.zero_grad() #梯度清0 loss.backward() optimizer.step() #下一次更新 if step%1000 == 0: test_output = cnn(test_x) pred_y = torch.max(test_output,1)[1].data.squeeze() accuracy =torch.true_divide(sum(pred_y==test_y), test_y.size(0)) print('Epoch:',epoch,'|step:',step,'|train loss:%4f' % loss.item(), 'test accuracy:%.4f' % accuracy)

    7、看一下预测结果

    test_output = cnn(test_x[:20]) # print(test_output) pred_y = torch.max(test_output,1)[1].data.squeeze() #最大元素对应的下标 print(pred_y[:20],'prediction number') print(test_y[:20],'real number')

    Processed: 0.010, SQL: 8