运筹学刚学完单纯形法,为了减轻作业负担,这个里给出通过单纯形表求解线性规划的python实现代码。
import numpy as np class LinearProblem: def __init__(self, A, b, c): """ used to solve the linear constrain optimize problem. min c*x s.t. Ax=b :param A: shape (m, n) :param b: shape (m, 1) :param c: shape (n, 1) """ self.x = np.zeros_like(c, dtype=float) self.A = np.array(A) self.x_dim = self.A.shape[1] self.b = np.array(b).reshape([-1, 1]) self.b_dim = self.b.shape[0] self.c = np.array(c).reshape([-1, 1]) self.no_solution = False self.minimum = False self.find_solution = False m = np.concatenate([self.A, np.eye(self.b_dim), self.b], axis=1) init_zeta = np.concatenate([np.zeros([1, self.x_dim]), -np.ones([1, self.b_dim]), np.zeros([1, 1])], axis=1) self.m = np.concatenate([init_zeta, m], axis=0) self.indexes = list(range(self.x_dim+self.b_dim)) self.base_index = list(range(self.x_dim, self.x_dim+self.b_dim)) self.artificial_index = set(self.base_index) self.log = [[self.m, self.base_index]] def solve(self): print("Finding the initial base vector...") self.clear_zeta() while not self.minimum: self.step() if self.no_solution: return None if self.get_solution_val() > 0: self.no_solution = True print("No solution found") return None self.get_init_base_index() self.m[0, :-1] = -self.c.T self.m[0, -1] = 0 self.clear_zeta() while not self.minimum: self.step() if self.no_solution: print("No minimum solution existed") return None self.find_solution = True self.get_solution() def get_solution(self): self.x -= self.x for i, bi in enumerate(self.base_index): self.x[bi] = self.m[i+1, -1] return self.x def get_solution_val(self): return self.m[0, -1] def get_init_base_index(self): row_tobe_delete = [] for i, bi in enumerate(self.base_index): if bi in self.artificial_index: flag = 0 for j, zj in enumerate(self.m[i+1, :self.x.shape[0]]): if zj > 0: self.base_index[i] = self.indexes[j] self.scale_col_by_row(j, i) flag = 1 break if not flag: row_tobe_delete.append(i+1) if len(row_tobe_delete) > 0: self.m = np.delete(self.m, row_tobe_delete, axis=0) tobe_delete = np.array(self.base_index)[np.array(row_tobe_delete).astype(int)-1] for i in tobe_delete: self.base_index.remove(i) self.m = np.delete(self.m, list(self.artificial_index), axis=1) self.indexes = self.indexes[:-len(self.artificial_index)] def scale_col_by_row(self, c, r): self.m[r, :] /= self.m[r, c] for i in range(self.m.shape[0]): if i == r: pass else: self.m[i, :] -= self.m[r, :]*self.m[i, c] def step(self): index_to_be_push = -1 index_to_be_pop = -1 min_theta = np.inf for i, zi in enumerate(self.m[0, :-1]): if zi > 0 and i not in self.artificial_index: index_to_be_push = i break if index_to_be_push < 0: self.minimum = True return for i, ai in enumerate(self.m[1:, index_to_be_push]): if ai > 0: theta = self.m[i+1, -1]/ai if theta < min_theta: min_theta = theta index_to_be_pop = i if index_to_be_pop < 0: self.no_solution = True self.scale_col_by_row(index_to_be_push, index_to_be_pop+1) self.log.append([self.m, self.base_index]) self.base_index[index_to_be_pop] = self.indexes[index_to_be_push] def clear_zeta(self): for i, bi in enumerate(self.base_index): self.m[i+1, :] /= self.m[i+1, bi] self.m[0, :] -= self.m[i+1, :]*self.m[0, bi] def print(self): print(self.A) print(self.b) print(self.c) print(self.m) def print_base_index(self): print(self.base_index) def print_solution(self): print(self.get_solution()) def print_log(self): print(self.log) if __name__ == '__main__': lp = LinearProblem(np.array([[1, 1, 1], [-1, 1, 0]]), np.array([[1], [0.5]]), np.array([[-1], [-1], [-1]])) lp.solve() lp.print() lp.print_base_index() print(lp.get_solution())