转载自 https://mp.weixin.qq.com/s/vP1cgP9FEVc_EBLwknmcHg
消息队列 已经逐渐成为企业应用系统 内部通信 的核心手段。它具有 低耦合、可靠投递、广播、流量控制、最终一致性 等一系列功能。
当前使用较多的 消息队列 有 RabbitMQ、 RocketMQ、 ActiveMQ、 Kafka、 ZeroMQ、 MetaMQ 等,而部分 数据库 如 Redis、 MySQL 以及 phxsql 也可实现消息队列的功能。
消息队列 是指利用 高效可靠 的 消息传递机制 进行与平台无关的 数据交流,并基于 数据通信 来进行分布式系统的集成。 通过提供 消息传递 和 消息排队 模型,它可以在 分布式环境 下提供 应用解耦、弹性伸缩、冗余存储、流量削峰、异步通信、数据同步 等等功能,其作为 分布式系统架构 中的一个重要组件,有着举足轻重的地位。
消息发送者 可以发送一个消息而无须等待响应。消息发送者 将消息发送到一条 虚拟的通道(主题 或 队列)上,消息接收者 则 订阅 或是 监听 该通道。一条信息可能最终转发给 一个或多个 消息接收者,这些接收者都无需对 消息发送者 做出 同步回应。整个过程都是 异步的。
主要体现在如下两点:
发送者和接受者不必了解对方、只需要 确认消息;发送者和接受者 不必同时在线。比如在线交易系统为了保证数据的 最终一致,在 支付系统 处理完成后会把 支付结果 放到 消息中间件 里,通知 订单系统 修改 订单支付状态。两个系统是通过消息中间件解耦的。
点对点模型 用于 消息生产者 和 消息消费者 之间 点到点 的通信。消息生产者将消息发送到由某个名字标识的特定消费者。这个名字实际上对于消费服务中的一个 队列( Queue),在消息传递给消费者之前它被 存储 在这个队列中。队列消息 可以放在 内存 中也可以 持久化,以保证在消息服务出现故障时仍然能够传递消息。
传统的点对点消息中间件通常由 消息队列服务、消息传递服务、消息队列 和 消息应用程序接口 API 组成,其典型的结构如下图所示。 特点:
每个消息只用一个消费者;发送者和接受者没有时间依赖;接受者确认消息接受和处理成功。发布者/订阅者 模型支持向一个特定的 消息主题 生产消息。 0 或 多个订阅者 可能对接收来自 特定消息主题 的消息感兴趣。
在这种模型下,发布者和订阅者彼此不知道对方,就好比是匿名公告板。这种模式被概况为:多个消费者可以获得消息,在 发布者 和 订阅者 之间存在 时间依赖性。发布者需要建立一个 订阅( subscription),以便能够消费者订阅。订阅者 必须保持 持续的活动状态 并 接收消息。
在这种情况下,在订阅者 未连接时,发布的消息将在订阅者 重新连接 时 重新发布,如下图所示:
特性:
每个消息可以有多个订阅者;客户端只有订阅后才能接收到消息;持久订阅和非持久订阅。注意:
发布者和订阅者有时间依赖:接受者和发布者只有建立订阅关系才能收到消息; 持久订阅:订阅关系建立后,消息就不会消失,不管订阅者是否都在线; 非持久订阅:订阅者为了接受消息,必须一直在线。 当只有一个订阅者时约等于点对点模式
当你需要使用 消息队列 时,首先需要考虑它的必要性。可以使用消息队列的场景有很多,最常用的几种,是做 应用程序松耦合、异步处理模式、发布与订阅、最终一致性、错峰流控 和 日志缓冲 等。反之,如果需要 强一致性,关注业务逻辑的处理结果,则使用 RPC 显得更为合适。
非核心 流程 异步化,减少系统 响应时间,提高 吞吐量。例如:短信通知、终端状态推送、 App 推送、用户注册 等。
消息队列 一般都内置了 高效的通信机制,因此也可以用于单纯的消息通讯,比如实现 点对点消息队列 或者 聊天室 等。
最终一致性 不是 消息队列 的必备特性,但确实可以依靠 消息队列 来做 最终一致性 的事情。
先写消息再操作,确保操作完成后再修改消息状态。定时任务补偿机制 实现消息 可靠发送接收、业务操作的可靠执行,要注意 消息重复 与 幂等设计。所有不保证 100% 不丢消息 的消息队列,理论上无法实现 最终一致性。像 Kafka 一类的设计,在设计层面上就有 丢消息 的可能(比如 定时刷盘,如果掉电就会丢消息)。哪怕只丢千分之一的消息,业务也必须用其他的手段来保证结果正确。
生产者/消费者 模式,只需要关心消息是否 送达队列,至于谁希望订阅和需要消费,是 下游 的事情,无疑极大地减少了开发和联调的工作量。
当 上下游系统 处理能力存在差距的时候,利用 消息队列 做一个通用的 “漏斗”,进行 限流控制。在下游有能力处理的时候,再进行分发。
举个例子:用户在支付系统成功结账后,订单系统会通过短信系统向用户推送扣费通知。短信系统 可能由于 短板效应,速度卡在 网关 上(每秒几百次请求),跟 前端的并发量 不是一个数量级。 于是,就造成 支付系统 和 短信系统 的处理能力出现差异化。
然而用户晚上个半分钟左右收到短信,一般是不会有太大问题的。如果没有消息队列,两个系统之间通过 协商、滑动窗口 等复杂的方案也不是说不能实现。但 系统复杂性 指数级增长,势必在 上游 或者 下游 做 存储,并且要处理 定时、拥塞 等一系列问题。而且每当有 处理能力有差距 的时候,都需要 单独 开发一套逻辑来维护这套逻辑。
所以,利用中间系统转储两个系统的通信内容,并在下游系统有能力处理这些消息的时候,再处理这些消息,是一套相对较通用的方式。
将消息队列用在 日志处理 中,比如 Kafka 的应用,解决 海量日志 传输和缓冲的问题。
应用案例 把日志进行集中收集,用于计算 PV、用户行为分析 等等。
消息队列一般都内置了 高效的通信机制,因此也可以用于单纯的 消息通讯,比如实现 点对点消息队列 或者 聊天室 等。
本部分主要介绍四种常用的消息队列( ActiveMQ / RabbitMQ / RocketMQ / Kafka)的主要特性、优点、缺点。
ActiveMQ 是由 Apache 出品, ActiveMQ 是一个完全支持 JMS1.1 和 J2EE1.4 规范的 JMSProvider 实现。它非常快速,支持 多种语言的客户端 和 协议,而且可以非常容易的嵌入到企业的应用环境中,并有许多高级功能。 (a) 主要特性
服从JMS规范: JMS 规范提供了良好的标准和保证,包括:同步 或 异步的消息分发,一次和仅一次消息分发,消息接收 和 订阅 等等。遵从 JMS规范的好处在于,不论使用什么 JMS 实现提供者,这些基础特性都是可用的;连接灵活性: ActiveMQ 提供了广泛的 连接协议,支持的协议有: HTTP/S, IP 多播, SSL, TCP, UDP 等等。对众多协议的支持让 ActiveMQ拥有了很好的灵活性;支持的协议种类多: OpenWire、 STOMP、 REST、 XMPP、 AMQP;持久化插件和安全插件: ActiveMQ 提供了 多种持久化 选择。而且, ActiveMQ 的安全性也可以完全依据用户需求进行 自定义鉴权 和 授权;支持的客户端语言种类多:除了 Java 之外,还有: C/C++, .NET, Perl, PHP, Python, Ruby;代理集群:多个 ActiveMQ 代理 可以组成一个 集群 来提供服务;异常简单的管理: ActiveMQ 是以开发者思维被设计的。所以,它并不需要专门的管理员,因为它提供了简单又使用的管理特性。有很多中方法可以 监控 ActiveMQ 不同层面的数据,包括使用在 JConsole 或者在 ActiveMQ的 WebConsole 中使用 JMX。通过处理 JMX 的告警消息,通过使用 命令行脚本,甚至可以通过监控各种类型的 日志。(b) 部署环境 ActiveMQ 可以运行在 Java 语言所支持的平台之上。使用 ActiveMQ 需要:
JavaJDKActiveMQ 安装包© 优点
跨平台 ( JAVA 编写与平台无关, ActiveMQ 几乎可以运行在任何的 JVM上);可以用 JDBC:可以将 数据持久化 到数据库。虽然使用 JDBC 会降低 ActiveMQ 的性能,但是数据库一直都是开发人员最熟悉的存储介质;支持 JMS 规范:支持 JMS 规范提供的 统一接口;支持 自动重连 和 错误重试机制;有安全机制:支持基于 shiro, jaas 等多种 安全配置机制,可以对 Queue/Topic 进行 认证和授权;监控完善:拥有完善的 监控,包括 WebConsole, JMX, Shell 命令行, Jolokia 的 RESTfulAPI;界面友善:提供的 WebConsole 可以满足大部分情况,还有很多 第三方的组件 可以使用,比如 hawtio;(d) 缺点
社区活跃度不及 RabbitMQ 高;根据其他用户反馈,会出莫名其妙的问题,会 丢失消息;目前重心放到 activemq6.0 产品 Apollo,对 5.x 的维护较少;不适合用于 上千个队列 的应用场景。RabbitMQ 于 2007 年发布,是一个在 AMQP (高级消息队列协议)基础上完成的,可复用的企业消息系统,是当前最主流的消息中间件之一。 (a) 主要特性
可靠性:提供了多种技术可以让你在 性能 和 可靠性 之间进行 权衡。这些技术包括 持久性机制、投递确认、发布者证实 和 高可用性机制;灵活的路由:消息在到达队列前是通过 交换机 进行 路由 的。 RabbitMQ 为典型的路由逻辑提供了 多种内置交换机 类型。如果你有更复杂的路由需求,可以将这些交换机组合起来使用,你甚至可以实现自己的交换机类型,并且当做 RabbitMQ 的 插件 来使用;消息集群:在相同局域网中的多个 RabbitMQ 服务器可以 聚合 在一起,作为一个独立的逻辑代理来使用;队列高可用:队列可以在集群中的机器上 进行镜像,以确保在硬件问题下还保证 消息安全;支持多种语言:用 Erlang 语言编写,支持只要是你能想到的 所有编程语言;管理界面: RabbitMQ 有一个易用的 用户界面,使得用户可以 监控 和 管理消息 Broker 的许多方面;跟踪机制:如果 消息异常, RabbitMQ 提供消息跟踪机制,使用者可以找出发生了什么;插件机制:提供了许多 插件,来从多方面进行扩展,也可以编写自己的插件。(b) 部署环境
RabbitMQ 可以运行在 Erlang 语言所支持的平台之上,包括 Solaris, BSD, Linux, MacOSX, TRU64, Windows 等。使用 RabbitMQ 需要:
ErLang 语言包RabbitMQ 安装包© 优点
由于 Erlang 语言的特性,消息队列性能较好,支持 高并发;健壮、稳定、易用、跨平台、支持 多种语言、文档齐全;有消息 确认机制 和 持久化机制,可靠性高;高度可定制的 路由;管理界面 较丰富,在互联网公司也有较大规模的应用,社区活跃度高。(d) 缺点
尽管结合 Erlang 语言本身的并发优势,性能较好,但是不利于做 二次开发和维护;实现了 代理架构,意味着消息在发送到客户端之前可以在 中央节点 上排队。此特性使得 RabbitMQ 易于使用和部署,但是使得其 运行速度较慢,因为中央节点 增加了延迟,消息封装后 也比较大;需要学习 比较复杂 的 接口和协议,学习和维护成本较高。RocketMQ 出自 阿里 的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一些改进,消息可靠性上 比 Kafka 更好。 RocketMQ 在阿里内部被广泛应用在 订单,交易,充值,流计算,消息推送,日志流式处理, binglog 分发 等场景。
(a) 主要特性
基于 队列模型:具有 高性能、高可靠、高实时、分布式 等特点;Producer、 Consumer、队列 都支持 分布式;Producer 向一些队列轮流发送消息,队列集合 称为 Topic。 Consumer如果做 广播消费,则一个 Consumer 实例消费这个 Topic 对应的 所有队列;如果做 集群消费,则 多个 Consumer 实例 平均消费 这个 Topic 对应的队列集合;能够保证 严格的消息顺序;提供丰富的 消息拉取模式;高效的订阅者 水平扩展能力;实时 的 消息订阅机制;亿级 消息堆积 能力;较少的外部依赖。(b) 部署环境
RocketMQ 可以运行在 Java 语言所支持的平台之上。使用 RocketMQ 需要:
JavaJDK安装 git、 MavenRocketMQ 安装包© 优点
单机 支持 1 万以上 持久化队列;RocketMQ 的所有消息都是 持久化的,先写入系统 PAGECACHE,然后 刷盘,可以保证 内存 与 磁盘 都有一份数据,而 访问 时,直接 从内存读取。模型简单,接口易用( JMS 的接口很多场合并不太实用);性能非常好,可以允许 大量堆积消息 在 Broker 中;支持 多种消费模式,包括 集群消费、广播消费等;各个环节 分布式扩展设计,支持 主从 和 高可用;开发度较活跃,版本更新很快。(d) 缺点
支持的 客户端语言 不多,目前是 Java 及 C++,其中 C++ 还不成熟;RocketMQ 社区关注度及成熟度也不及前两者;没有 Web 管理界面,提供了一个 CLI (命令行界面) 管理工具带来 查询、管理 和 诊断各种问题;没有在 MQ 核心里实现 JMS 等接口。ApacheKafka 是一个 分布式消息发布订阅 系统。它最初由 LinkedIn 公司基于独特的设计实现为一个 分布式的日志提交系统 ( a distributed commit log),之后成为 Apache 项目的一部分。 Kafka 性能高效、可扩展良好 并且 可持久化。它的 分区特性,可复制 和 可容错 都是其不错的特性。
(a) 主要特性
快速持久化:可以在 O(1) 的系统开销下进行 消息持久化;高吞吐:在一台普通的服务器上既可以达到 10W/s 的 吞吐速率;完全的分布式系统: Broker、 Producer 和 Consumer 都原生自动支持 分布式,自动实现 负载均衡;支持 同步 和 异步 复制两种 高可用机制;支持 数据批量发送 和 拉取;零拷贝技术(zero-copy):减少 IO 操作步骤,提高 系统吞吐量;数据迁移、扩容 对用户透明;无需停机 即可扩展机器;其他特性:丰富的 消息拉取模型、高效 订阅者水平扩展、实时的 消息订阅、亿级的 消息堆积能力、定期删除机制;(b) 部署环境
使用 Kafka 需要:
JavaJDKKafka 安装包© 优点
客户端语言丰富:支持 Java、 .Net、 PHP、 Ruby、 Python、 Go 等多种语言;高性能:单机写入 TPS 约在 100 万条/秒,消息大小 10 个字节;提供 完全分布式架构,并有 replica 机制,拥有较高的 可用性 和 可靠性,理论上支持 消息无限堆积;支持批量操作;消费者 采用 Pull 方式获取消息。消息有序,通过控制 能够保证所有消息被消费且仅被消费 一次;有优秀的第三方 KafkaWeb 管理界面 Kafka-Manager;在 日志领域 比较成熟,被多家公司和多个开源项目使用。(d) 缺点
Kafka 单机超过 64 个 队列/分区 时, Load 时会发生明显的飙高现象。队列 越多,负载 越高,发送消息 响应时间变长;使用 短轮询方式,实时性 取决于 轮询间隔时间;消费失败 不支持重试;支持 消息顺序,但是 一台代理宕机 后,就会产生 消息乱序;社区更新较慢。这里列举了上述四种消息队列的差异对比:
Kafka 在于 分布式架构, RabbitMQ 基于 AMQP 协议 来实现, RocketMQ 的思路来源于 Kafka,改成了 主从结构,在 事务性 和 可靠性 方面做了优化。广泛来说,电商、金融 等对 事务一致性 要求很高的,可以考虑 RabbitMQ 和 RocketMQ,对 性能要求高 的可考虑 Kafka。
本文介绍了消息队列的特点,消息队列的 传递服务模型,消息的 传输方式,消息的 推拉模式。然后介绍了 ActiveMQ, RabbitMQ, RocketMQ 和 Kafka 几种常见的消息队列,阐述了 各种消息队列 的 主要特点 和 优缺点。通过本文,对于消息队列及相关技术选型,相信你会有了更深入的理解和认识。更多细节和原理性的东西,还需在实践中见真知!
学完本章以后建议继续阅读以下文章,带你更深入的了解消息队列。 消息队列 常见问题分析(小白必看) 消息队列 Kafka的架构原理 (小白必看)