【Elasticsearch】Elasticsearch:aggregation介绍

    科技2025-01-19  7

    1.概述

    转载:https://www.cnblogs.com/sanduzxcvbnm/p/12090671.html

    聚合(aggregation)功能集是整个Elasticsearch产品中最令人兴奋和有益的功能之一,主要是因为它提供了一个非常有吸引力对之前的facets的替代。

    在本教程中,我们将解释Elasticsearch中的聚合(aggregation)并逐步介绍一些示例。 我们比较了指标聚合和存储桶聚合,并展示了如何利用聚合嵌套(对于facets而言这是不可能的)。 欢迎您在本文中复制所有示例代码。

    2.关于Elastic Facets的一点背景

    如果您曾经使用过Elasticsearch的facets,那么您肯定了解它们的实用性。 经过丰富的经验,我们在这里告诉您Elasticsearch聚合(aggregations)甚至更好。 facets使您可以快速计算和汇总查询结果,并且可以将其用于各种任务,例如结果值的动态计数或创建分布直方图。 尽管facets非常强大,但它们在Elasticsearch核心中的实现存在一些限制。 由于facets仅执行一级深度的计算,因此将它们组合起来并不容易。

    聚合(Aggregation)API(https://www.elastic.co/guide/en/elasticsearch/client/java-api/7.4/java-aggs.html)解决了这些问题,并且还提供了一种简单的方法在查询时(在单个请求中)进行的非常精确的多级计算。 简而言之:Elasticsearch聚合是对facets的一个更加全面的提高的。

    3.准备数据

    为了完成我们今天的练习,我们先来准备一些数据。我们想创建一个叫做sports的索引。为此,我们先创建一个mapping:

    PUT sports { "mappings": { "properties": { "birthdate": { "type": "date", "format": "dateOptionalTime" }, "location": { "type": "geo_point" }, "name": { "type": "keyword" }, "rating": { "type": "integer" }, "sport": { "type": "keyword" } } } }

    在上面,我们定义了一个sports索引的mapping。在下面,我们通过bulk API来把我们想要的数据导入到索引中。

    POST _bulk/ {"index":{"_index":"sports"}} {"name":"Michael","birthdate":"1989-10-1","sport":"Baseball","rating":["5","4"],"location":"46.22,-68.45"} {"index":{"_index":"sports"}} {"name":"Bob","birthdate":"1989-11-2","sport":"Baseball","rating":["3","4"],"location":"45.21,-68.35"} {"index":{"_index":"sports"}} {"name":"Jim","birthdate":"1988-10-3","sport":"Baseball","rating":["3","2"],"location":"45.16,-63.58"} {"index":{"_index":"sports"}} {"name":"Joe","birthdate":"1992-5-20","sport":"Baseball","rating":["4","3"],"location":"45.22,-68.53"} {"index":{"_index":"sports"}} {"name":"Tim","birthdate":"1992-2-28","sport":"Baseball","rating":["3","3"],"location":"46.22,-68.85"} {"index":{"_index":"sports"}} {"name":"Alfred","birthdate":"1990-9-9","sport":"Baseball","rating":["2","2"],"location":"45.12,-68.35"} {"index":{"_index":"sports"}} {"name":"Jeff","birthdate":"1990-4-1","sport":"Baseball","rating":["2","3"],"location":"46.12,-68.55"} {"index":{"_index":"sports"}} {"name":"Will","birthdate":"1988-3-1","sport":"Baseball","rating":["4","4"],"location":"46.25,-68.55"} {"index":{"_index":"sports"}} {"name":"Mick","birthdate":"1989-10-1","sport":"Baseball","rating":["3","4"],"location":"46.22,-68.45"} {"index":{"_index":"sports"}} {"name":"Pong","birthdate":"1989-11-2","sport":"Baseball","rating":["1","3"],"location":"45.21,-68.35"} {"index":{"_index":"sports"}} {"name":"Ray","birthdate":"1988-10-3","sport":"Baseball","rating":["2","2"],"location":"45.16,-63.58"} {"index":{"_index":"sports"}} {"name":"Ping","birthdate":"1992-5-20","sport":"Baseball","rating":["4","3"],"location":"45.22,-68.53"} {"index":{"_index":"sports"}} {"name":"Duke","birthdate":"1992-2-28","sport":"Baseball","rating":["5","2"],"location":"46.22,-68.85"} {"index":{"_index":"sports"}} {"name":"Hal","birthdate":"1990-9-9","sport":"Baseball","rating":["4","2"],"location":"45.12,-68.35"} {"index":{"_index":"sports"}} {"name":"Charge","birthdate":"1990-4-1","sport":"Baseball","rating":["3","2"],"location":"46.12,-68.55"} {"index":{"_index":"sports"}} {"name":"Barry","birthdate":"1988-3-1","sport":"Baseball","rating":["5","2"],"location":"46.25,-68.55"} {"index":{"_index":"sports"}} {"name":"Bank","birthdate":"1988-3-1","sport":"Golf","rating":["6","4"],"location":"46.25,-68.55"} {"index":{"_index":"sports"}} {"name":"Bingo","birthdate":"1988-3-1","sport":"Golf","rating":["10","7"],"location":"46.25,-68.55"} {"index":{"_index":"sports"}} {"name":"James","birthdate":"1988-3-1","sport":"Basketball","rating":["10","8"],"location":"46.25,-68.55"} {"index":{"_index":"sports"}} {"name":"Wayne","birthdate":"1988-3-1","sport":"Hockey","rating":["10","10"],"location":"46.25,-68.55"} {"index":{"_index":"sports"}} {"name":"Brady","birthdate":"1988-3-1","sport":"Football","rating":["10","10"],"location":"46.25,-68.55"} {"index":{"_index":"sports"}} {"name":"Lewis","birthdate":"1988-3-1","sport":"Football","rating":["10","10"],"location":"46.25,-68.55"}

    通过上面的bulk API接口,我们可以把我们想要的数据输入到sports的索引中。我们可以通过如下的接口来获得我多少条数据:

    GET sports/_count 显示结果: { "count" : 22, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 } }

    在这个数据库里,我们有可以看到有22条的数据。

    4.动手实践

    聚合的两个主要系列是指标聚合(metric aggregations)(https://www.elastic.co/guide/en/elasticsearch/reference/master/search-aggregations-metrics.html)和存储桶聚合(bucket aggregation)(https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket.html)。 指标聚合计算一组文档中的某些值(例如平均值); 存储桶聚合将文档分组到存储桶中。 在详细介绍之前,让我们看一下聚合请求的一般结构。除此之前,聚合还有Matrix(https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-matrix.html)及Pipleline(https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline.html聚合。

    Aggregation结构 "aggregations" : { "<aggregation_name>" : { "<aggregation_type>" : { <aggregation_body> }, ["aggregations" : { [<sub_aggregation>]* } ] } [,"<aggregation_name_2>" : { ... } ]* }

    请求json中的聚合(您也可以改用aggs)对象包含聚合名称,类型和主体。 <aggregation_name>是用户定义的名称(不带括号),该名称将唯一标识响应中的聚合名称/键。

    <aggregation_type>通常是聚合中的第一个键。 它可以是terms,stats或geo-distance聚合,但这是它的起点。 在我们的<aggregation_type>中,我们有一个<aggregation_body>。 在<aggregation_body>中,我们指定聚合所需的属性。 可用属性取决于聚合的类型。

    您可以选择提供子聚合,以将一个聚合元素的结果嵌套到另一个聚合元素中。 此外,您可以在查询中输入多个聚合(aggregation_name_2),以具有更多单独的顶级聚合。 尽管对嵌套级别没有限制,但是您不能将度量标准嵌套在度量标准聚合中,原因如下所述。 在研究可以聚合的不同类型的值之后,我们将了解桶聚合和度量聚合之间的区别。

    5.例子

    一些聚合使用从聚合文档中获取的值。 这些值可以从指定的文档字段(field)中获取,也可以从随每个文档生成值的脚本中获取。 下面的第一个示例在名称字段上提供了术语聚合(terms aggregation),在子聚合rating_avg值上给出了顺序。 如您所见,我们使用嵌套的指标聚合对存储桶聚合的结果进行排序。

    尽管我们使用上面给出的索引,但是我们鼓励您运行此查询(以及下面的其他查询)。 您可以从工作中获得直接结果,然后对其进行修改以匹配您的数据集。

    另外,请仔细查看我们是否包含“ size”:0,因为我们的重点是聚合结果,而不是文档结果。这里设置为0,表示我们不想得到任何的文档。

    GET sports/_search { "size": 0, "aggregations": { "the_name": { "terms": { "field": "name", "order": { "rating_avg": "desc" } }, "aggregations": { "rating_avg": { "avg": { "field": "rating" } } } } } } 显示的结果为: { "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 22, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "the_name" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 12, "buckets" : [ { "key" : "Brady", "doc_count" : 1, "rating_avg" : { "value" : 10.0 } }, { "key" : "Lewis", "doc_count" : 1, "rating_avg" : { "value" : 10.0 } }, { "key" : "Wayne", "doc_count" : 1, "rating_avg" : { "value" : 10.0 } }, { "key" : "James", "doc_count" : 1, "rating_avg" : { "value" : 9.0 } }, { "key" : "Bingo", "doc_count" : 1, "rating_avg" : { "value" : 8.5 } }, { "key" : "Bank", "doc_count" : 1, "rating_avg" : { "value" : 5.0 } }, { "key" : "Michael", "doc_count" : 1, "rating_avg" : { "value" : 4.5 } }, { "key" : "Will", "doc_count" : 1, "rating_avg" : { "value" : 4.0 } }, { "key" : "Barry", "doc_count" : 1, "rating_avg" : { "value" : 3.5 } }, { "key" : "Bob", "doc_count" : 1, "rating_avg" : { "value" : 3.5 } } ] } } }

    上面的结果显示:我们得到了按照每个人来进行分类的聚合,而他们的顺序是按照rating_avg聚合所获得平均分数来排序的。

    我们还可以提供一个script脚本来生成聚合所使用的值:

    GET sports/_search { "size": 0, "aggs": { "age_range": { "range": { "script": { "source": """ ZonedDateTime dob = doc['birthdate'].value; return params.now - dob.getYear() """ , "params": { "now": 2019 } }, "ranges": [ { "from": 30, "to": 31 } ] } } } }

    在上面,我们通过脚本生产value source,并对它做出统计。

    显示的结果是:

    { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 22, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "age_range" : { "buckets" : [ { "key" : "30.0-31.0", "from" : 30.0, "to" : 31.0, "doc_count" : 4 } ] } } }

    上面显示在30至31岁之间的有4个人。

    Metric Aggregations

    指标聚合类型用于计算整个文档集的指标。 有单值指标聚合(例如avg)和多值指标聚合(例如stats)。 指标聚合的一个简单示例是value_count聚合,它仅返回已为给定字段建立索引的值的总数。 要在运动员数据集中的“sport”字段中找到值的数量,我们可以使用以下查询:

    GET sports/_search { "size": 0, "aggs": { "sport_count": { "value_count": { "field": "sport" } } } } 显示结果: { "took" : 2, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 22, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "sport_count" : { "value" : 22 } } }

    请注意,这将返回该字段的值总数,而不是唯一值的数目。 因此,在这种情况下(由于每个文档在“ sport”字段中都有一个单词值),结果仅等于索引中的文档数。

    Bucket Aggregations

    存储桶聚合是用于对文档进行分组的机制。 每种类型的存储桶聚合都有自己的分割文档集的方法。 也许最简单的类型是术语聚合。 这个功能非常像术语方面,返回给定字段索引的唯一术语以及匹配文档的数量。 如果我们想在数据集中的“sport”字段中找到所有值,则可以使用以下方法:

    GET sports/_search { "size": 0, "aggs": { "sport": { "terms": { "field": "sport", "size": 10 } } } } 返回值: { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 22, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "sport" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : "Baseball", "doc_count" : 16 }, { "key" : "Football", "doc_count" : 2 }, { "key" : "Golf", "doc_count" : 2 }, { "key" : "Basketball", "doc_count" : 1 }, { "key" : "Hockey", "doc_count" : 1 } ] } } }

    您可能会发现geo_distance聚合更具吸引力。 尽管它有许多选项,但在最简单的情况下,它取一个原点和一个距离范围,然后根据给定的geo_point字段计算圆中有多少文档。

    假设我们需要知道多少个运动员居住在距离地理位置“ 46.12,-68.55” 20英里范围内。 我们可以使用以下聚合:

    GET sports/_search { "size": 0, "aggregations": { "baseball_player_ring": { "geo_distance": { "field": "location", "origin": "46.12,-68.55", "unit": "mi", "ranges": [ { "from": 0, "to": 20 } ] } } } } 返回结果: { "took" : 4, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 22, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "baseball_player_ring" : { "buckets" : [ { "key" : "*-20.0", "from" : 0.0, "to" : 20.0, "doc_count" : 14 } ] } } }

    内嵌 Bucket Aggregations

    许多开发人员会同意,桶聚合的最强大方面是嵌套它们的能力。 您可以定义顶级存储桶聚合,并在其内部定义对每个结果存储桶进行操作的第二级聚合。 此嵌套可以根据需要扩展到多个级别。

    继续我们的示例,我们可以使用按年龄划分的嵌套范围聚合(根据脚本的“出生日期”计算得出)来进一步细分geo_distance聚合的结果。 假设我们想知道属于两个年龄段的每个运动员中有多少运动员(他们生活在上一节中定义的圈子内)。 我们可以使用以下聚合来获取此信息:

    GET sports/_search { "size": 0, "aggregations": { "baseball_player_ring": { "geo_distance": { "field": "location", "origin": "46.12,-68.55", "unit": "mi", "ranges": [ { "from": 0, "to": 20 } ] }, "aggregations": { "ring_age_ranges": { "range": { "script": { "source": """ ZonedDateTime dob = doc['birthdate'].value; return params.now - dob.getYear() """ , "params": { "now": 2019 } }, "ranges": [ { "from": 30, "to": 31 }, { "from": 31, "to": 32 } ] } } } } } } 显示的结果为: { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 22, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "baseball_player_ring" : { "buckets" : [ { "key" : "*-20.0", "from" : 0.0, "to" : 20.0, "doc_count" : 14, "ring_age_ranges" : { "buckets" : [ { "key" : "30.0-31.0", "from" : 30.0, "to" : 31.0, "doc_count" : 2 }, { "key" : "31.0-32.0", "from" : 31.0, "to" : 32.0, "doc_count" : 8 } ] } } ] } } }

    现在,让我们使用stats(多值指标汇总器)来计算最内部结果的一些统计数据。 对于居住在我们圈子中的运动员以及两个年龄段的每个年龄段,我们现在都希望根据结果文档计算“rating”字段的统计信息:

    GET sports/_search { "size": 0, "aggregations": { "baseball_player_ring": { "geo_distance": { "field": "location", "origin": "46.12,-68.55", "unit": "mi", "ranges": [ { "from": 0, "to": 20 } ] }, "aggregations": { "ring_age_ranges": { "range": { "script": { "source": """ ZonedDateTime dob = doc['birthdate'].value; return params.now - dob.getYear() """ , "params": { "now": 2019 } }, "ranges": [ { "from": 30, "to": 31 }, { "from": 31, "to": 32 } ] }, "aggregations": { "rating_stats": { "stats": { "field": "rating" } } } } } } } }

    我们得到一个我们需要的统计信息的响应:

    { "took" : 0, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 22, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "baseball_player_ring" : { "buckets" : [ { "key" : "*-20.0", "from" : 0.0, "to" : 20.0, "doc_count" : 14, "ring_age_ranges" : { "buckets" : [ { "key" : "30.0-31.0", "from" : 30.0, "to" : 31.0, "doc_count" : 2, "rating_stats" : { "count" : 4, "min" : 3.0, "max" : 5.0, "avg" : 4.0, "sum" : 16.0 } }, { "key" : "31.0-32.0", "from" : 31.0, "to" : 32.0, "doc_count" : 8, "rating_stats" : { "count" : 16, "min" : 2.0, "max" : 10.0, "avg" : 7.5, "sum" : 120.0 } } ] } } ] } } }

    如您所见,您可以创建一个包含多个存储更多存储桶的大存储桶。 您还可以获取每个存储分区的指标(metrics),以及不断提高的复杂性。 通过这些简单的构建块,您可以使用嵌套聚合从数据中获得深刻而复杂的见解。

    Processed: 0.012, SQL: 8