这个 Python 知识点,90% 的人都得挂~

    科技2025-02-06  28

    本篇选自 Python黑魔法指南 -> 第四章 -> 第2节。

    github仓库: https://github.com/iswbm/magic-python

    magic-python 目前已经有 600+ 的 star 了,越来越多的人知道了它,从百度网盘的数据来看,已经有 将近 5000 的人下载了这本电子书。

    如果本书对你学习 Python 有所帮助,那可以请你帮我 github 上帮我点个 star 嘛?让更多的人知道它。

    本篇文章是选自该书的一节,由于昨晚有一位读者留言帮我指正了点小错误,所以我今天对这个知识点的最后一部分内容进行重新梳理,整理一下发出来。希望对你有所帮助。

    -- 正文开始--


    学习 Python 这么久了,说起 Python 的优雅之处,能让我脱口而出的, Descriptor(描述符)特性可以排得上号。

    描述符 是Python 语言独有的特性,它不仅在应用层使用,在语言语法糖的实现上也有使用到(在下面的文章会一一介绍)。

    当你点进这篇文章时

    你也许没学过描述符,甚至没听过描述符。

    或者你对描述符只是一知半解

    无论你是哪种,本篇都将带你全面的学习描述符,一起来感受 Python 语言的优雅。

    1. 为什么要使用描述符?

    假想你正在给学校写一个成绩管理系统,并没有太多编码经验的你,可能会这样子写。

    class Student:     def __init__(self, name, math, chinese, english):         self.name = name         self.math = math         self.chinese = chinese         self.english = english     def __repr__(self):         return "<Student: {}, math:{}, chinese: {}, english:{}>".format(                 self.name, self.math, self.chinese, self.english             )

    看起来一切都很合理

    >>> std1 = Student('小明', 76, 87, 68) >>> std1 <Student: 小明, math:76, chinese: 87, english:68>

    但是程序并不像人那么智能,不会自动根据使用场景判断数据的合法性,如果老师在录入成绩的时候,不小心录入了将成绩录成了负数,或者超过100,程序是无法感知的。

    聪明的你,马上在代码中加入了判断逻辑。

    class Student:     def __init__(self, name, math, chinese, english):         self.name = name         if 0 <= math <= 100:             self.math = math         else:             raise ValueError("Valid value must be in [0, 100]")                  if 0 <= chinese <= 100:             self.chinese = chinese         else:             raise ValueError("Valid value must be in [0, 100]")                if 0 <= chinese <= 100:             self.english = english         else:             raise ValueError("Valid value must be in [0, 100]")              def __repr__(self):         return "<Student: {}, math:{}, chinese: {}, english:{}>".format(                 self.name, self.math, self.chinese, self.english             )

    这下程序稍微有点人工智能了,能够自己明辨是非了。

    程序是智能了,但在__init__里有太多的判断逻辑,很影响代码的可读性。巧的是,你刚好学过 Property 特性,可以很好的应用在这里。于是你将代码修改成如下,代码的可读性瞬间提升了不少

    class Student:     def __init__(self, name, math, chinese, english):         self.name = name         self.math = math         self.chinese = chinese         self.english = english     @property     def math(self):         return self._math     @math.setter     def math(self, value):         if 0 <= value <= 100:             self._math = value         else:             raise ValueError("Valid value must be in [0, 100]")     @property     def chinese(self):         return self._chinese     @chinese.setter     def chinese(self, value):         if 0 <= value <= 100:             self._chinese = value         else:             raise ValueError("Valid value must be in [0, 100]")     @property     def english(self):         return self._english     @english.setter     def english(self, value):         if 0 <= value <= 100:             self._english = value         else:             raise ValueError("Valid value must be in [0, 100]")     def __repr__(self):         return "<Student: {}, math:{}, chinese: {}, english:{}>".format(                 self.name, self.math, self.chinese, self.english             )

    程序还是一样的人工智能,非常好。

    你以为你写的代码,已经非常优秀,无懈可击了。

    没想到,人外有天,你的主管看了你的代码后,深深地叹了口气:类里的三个属性,math、chinese、english,都使用了 Property 对属性的合法性进行了有效控制。功能上,没有问题,但就是太啰嗦了,三个变量的合法性逻辑都是一样的,只要大于0,小于100 就可以,代码重复率太高了,这里三个成绩还好,但假设还有地理、生物、历史、化学等十几门的成绩呢,这代码简直没法忍。去了解一下 Python 的描述符吧。

    经过主管的指点,你知道了「描述符」这个东西。怀着一颗敬畏之心,你去搜索了下关于 描述符的用法。

    其实也很简单,一个实现了 描述符协议 的类就是一个描述符。

    什么描述符协议:在类里实现了 __get__()、__set__()、__delete__() 其中至少一个方法。

    __get__:用于访问属性。它返回属性的值,若属性不存在、不合法等都可以抛出对应的异常。

    __set__:将在属性分配操作中调用。不会返回任何内容。

    __delete__:控制删除操作。不会返回内容。

    对描述符有了大概的了解后,你开始重写上面的方法。

    如前所述,Score 类是一个描述符,当从 Student 的实例访问 math、chinese、english这三个属性的时候,都会经过 Score 类里的三个特殊的方法。这里的 Score 避免了 使用Property 出现大量的代码无法复用的尴尬。

    class Score:     def __init__(self, default=0):         self._score = default     def __set__(self, instance, value):         if not isinstance(value, int):             raise TypeError('Score must be integer')         if not 0 <= value <= 100:             raise ValueError('Valid value must be in [0, 100]')         self._score = value     def __get__(self, instance, owner):         return self._score     def __delete__(self):         del self._score          class Student:     math = Score(0)     chinese = Score(0)     english = Score(0)     def __init__(self, name, math, chinese, english):         self.name = name         self.math = math         self.chinese = chinese         self.english = english     def __repr__(self):         return "<Student: {}, math:{}, chinese: {}, english:{}>".format(                 self.name, self.math, self.chinese, self.english             )

    实现的效果和前面的一样,可以对数据的合法性进行有效控制(字段类型、数值区间等)

    以上,我举了下具体的实例,从最原始的编码风格到 Property ,最后引出描述符。由浅入深,一步一步带你感受到描述符的优雅之处。

    到这里,你需要记住的只有一点,就是描述符给我们带来的编码上的便利,它在实现 保护属性不受修改、属性类型检查 的基本功能,同时有大大提高代码的复用率。

    2. 描述符的访问规则

    描述符分两种:

    数据描述符:实现了__get__ 和 __set__ 两种方法的描述符

    非数据描述符:只实现了__get__ 一种方法的描述符

    你一定会问,他们有什么区别呢?网上的讲解,我看过几个,很多都把一个简单的东西讲得复杂了。

    其实就一句话,数据描述器和非数据描述器的区别在于:它们相对于实例的字典的优先级不同。

    如果实例字典中有与描述符同名的属性,如果描述符是数据描述符,优先使用数据描述符,如果是非数据描述符,优先使用字典中的属性。

    这边还是以上节的成绩管理的例子来说明,方便你理解。

    # 数据描述符 class DataDes:     def __init__(self, default=0):         self._score = default     def __set__(self, instance, value):         self._score = value     def __get__(self, instance, owner):         print("访问数据描述符里的 __get__")         return self._score # 非数据描述符 class NoDataDes:     def __init__(self, default=0):         self._score = default     def __get__(self, instance, owner):         print("访问非数据描述符里的 __get__")         return self._score class Student:     math = DataDes(0)     chinese = NoDataDes(0)     def __init__(self, name, math, chinese):         self.name = name         self.math = math         self.chinese = chinese              def __getattribute__(self, item):         print("调用 __getattribute__")         return super(Student, self).__getattribute__(item)           def __repr__(self):         return "<Student: {}, math:{}, chinese: {},>".format(                 self.name, self.math, self.chinese)

    需要注意的是,math 是数据描述符,而 chinese 是非数据描述符。从下面的验证中,可以看出,当实例属性和数据描述符同名时,会优先访问数据描述符(如下面的math),而当实例属性和非数据描述符同名时,会优先访问实例属性(__getattribute__)

    >>> std = Student('xm', 88, 99) >>>  >>> std.math 调用 __getattribute__ 访问数据描述符里的 __get__ 88 >>> std.chinese 调用 __getattribute__ 99

    讲完了数据描述符和非数据描述符,我们还需要了解的对象属性的查找规律。

    当我们对一个实例属性进行访问时,Python 会按 obj.__dict__ → type(obj).__dict__ → type(obj)的父类.__dict__ 顺序进行查找,如果查找到目标属性并发现是一个描述符,Python 会调用描述符协议来改变默认的控制行为。

    3. 基于描述符如何实现property

    经过上面的讲解,我们已经知道如何定义描述符,且明白了描述符是如何工作的。

    正常人所见过的描述符的用法就是上面提到的那些,我想说的是那只是描述符协议最常见的应用之一,或许你还不知道,其实有很多 Python 的特性的底层实现机制都是基于 描述符协议 的,比如我们熟悉的@property 、@classmethod 、@staticmethod 和 super 等。

    先来说说 property 吧。

    有了前面的基础,我们知道了 property 的基本用法。这里我直接切入主题,从第一篇的例子里精简了一下。

    class Student:     def __init__(self, name):         self.name = name     @property     def math(self):         return self._math     @math.setter     def math(self, value):         if 0 <= value <= 100:             self._math = value         else:             raise ValueError("Valid value must be in [0, 100]")

    不防再简单回顾一下它的用法,通过property装饰的函数,如例子中的 math 会变成 Student 实例的属性。而对 math 属性赋值会进入 使用 math.setter 装饰函数的逻辑代码块。

    为什么说 property 底层是基于描述符协议的呢?通过 PyCharm 点击进入 property 的源码,很可惜,只是一份类似文档一样的伪源码,并没有其具体的实现逻辑。

    不过,从这份伪源码的魔法函数结构组成,可以大体知道其实现逻辑。

    这里我自己通过模仿其函数结构,结合「描述符协议」来自己实现类 property 特性。

    代码如下:

    class TestProperty(object):     def __init__(self, fget=None, fset=None, fdel=None, doc=None):         self.fget = fget         self.fset = fset         self.fdel = fdel         self.__doc__ = doc     def __get__(self, obj, objtype=None):         print("in __get__")         if obj is None:             return self         if self.fget is None:             raise AttributeError         return self.fget(obj)     def __set__(self, obj, value):         print("in __set__")         if self.fset is None:             raise AttributeError         self.fset(obj, value)     def __delete__(self, obj):         print("in __delete__")         if self.fdel is None:             raise AttributeError         self.fdel(obj)     def getter(self, fget):         print("in getter")         return type(self)(fget, self.fset, self.fdel, self.__doc__)     def setter(self, fset):         print("in setter")         return type(self)(self.fget, fset, self.fdel, self.__doc__)     def deleter(self, fdel):         print("in deleter")         return type(self)(self.fget, self.fset, fdel, self.__doc__)

    然后 Student 类,我们也相应改成如下

    class Student:     def __init__(self, name):         self.name = name     # 其实只有这里改变     @TestProperty     def math(self):         return self._math     @math.setter     def math(self, value):         if 0 <= value <= 100:             self._math = value         else:             raise ValueError("Valid value must be in [0, 100]")

    为了尽量让你少产生一点疑惑,我这里做两点说明:

    使用TestProperty装饰后,math 不再是一个函数,而是TestProperty 类的一个实例。所以第二个math函数可以使用 math.setter 来装饰,本质是调用TestProperty.setter 来产生一个新的 TestProperty 实例赋值给第二个math。

    第一个 math 和第二个 math 是两个不同 TestProperty 实例。但他们都属于同一个描述符类(TestProperty),当对 math 对于赋值时,就会进入 TestProperty.__set__,当对math 进行取值里,就会进入 TestProperty.__get__。仔细一看,其实最终访问的还是Student实例的 _math 属性。

    说了这么多,还是运行一下,更加直观一点。

    # 运行后,会直接打印这一行,这是在实例化 TestProperty 并赋值给第二个math in setter >>> >>> s1.math = 90 in __set__ >>> s1.math in __get__ 90

    对于以上理解 property 的运行原理有困难的同学,请务必参照我上面写的两点说明。如有其他疑问,可以加微信与我进行探讨。

    4. 基于描述符如何实现staticmethod

    说完了 property ,这里再来讲讲  @classmethod 和 @staticmethod 的实现原理。

    我这里定义了一个类,用了两种方式来实现静态方法。

    class Test:     @staticmethod     def myfunc():         print("hello") # 上下两种写法等价 class Test:     def myfunc():         print("hello")     # 重点:这就是描述符的体现     myfunc = staticmethod(myfunc)

    这两种写法是等价的,就好像在 property 一样,其实以下两种写法也是等价的。

    @TestProperty def math(self):     return self._math    math = TestProperty(fget=math)

    话题还是转回到 staticmethod 这边来吧。

    由上面的注释,可以看出 staticmethod 其实就相当于一个描述符类,而myfunc 在此刻变成了一个描述符。关于 staticmethod 的实现,你可以参照下面这段我自己写的代码,加以理解。

    调用这个方法可以知道,每调用一次,它都会经过描述符类的 __get__ 。

    >>> Test.myfunc() in staticmethod __get__ hello >>> Test().myfunc() in staticmethod __get__ hello

    5. 基于描述符如何实现classmethod

    同样的 classmethod 也是一样。

    class classmethod(object):     def __init__(self, f):         self.f = f     def __get__(self, instance, owner=None):         print("in classmethod __get__")                  def newfunc(*args):             return self.f(owner, *args)         return newfunc class Test:     def myfunc(cls):         print("hello")              # 重点:这就是描述符的体现     myfunc = classmethod(myfunc)

    验证结果如下

    >>> Test.myfunc() in classmethod __get__ hello >>> Test().myfunc() in classmethod __get__ hello

    讲完了 property、staticmethod和classmethod 与 描述符的关系。我想你应该对描述符在 Python 中的应用有了更深的理解。对于 super 的实现原理,就交由你来自己完成。

    6. 所有实例共享描述符

    通过以上内容的学习,你是不是觉得自己已经对描述符足够了解了呢?

    可在这里,我想说以上的描述符代码都有问题。

    问题在哪里呢?请看下面这个例子。

    class Score:     def __init__(self, default=0):         self._value = default     def __get__(self, instance, owner):         return self._value     def __set__(self, instance, value):         if 0 <= value <= 100:             self._value = value         else:             raise ValueError class Student:     math = Score(0)     chinese = Score(0)     english = Score(0)     def __repr__(self):         return "<Student math:{}, chinese:{}, english:{}>".format(self.math, self.chinese, self.english)

    Student 里没有像前面那样写了构造函数,但是关键不在这儿,没写只是因为没必要写。

    然后来看一下会出现什么样的问题呢

    >>> std1 = Student() >>> std1 <Student math:0, chinese:0, english:0> >>> std1.math = 85 >>> std1 <Student math:85, chinese:0, english:0> >>> std2 = Student() >>> std2 # std2 居然共享了std1 的属性值 <Student math:85, chinese:0, english:0> >>> std2.math = 100 >>> std1 # std2 也会改变std1 的属性值 <Student math:100, chinese:0, english:0>

    从结果上来看,std2 居然共享了 std1 的属性值,只要其中一个实例的变量发生改变,另一个实例的变量也会跟着改变。

    探其根因,是由于此时 math,chinese,english 三个全部是类变量,导致 std2 和 std1 在访问 math,chinese,english 这三个变量时,其实都是访问类变量。

    问题是不是来了?小明和小强的分数怎么可能是绑定的呢?这很明显与实际业务不符。

    使用描述符给我们制造了便利,却无形中给我们带来了麻烦,难道这也是描述符的特性吗?

    描述符是个很好用的特性,会出现这个问题,是由于我们之前写的描述符代码都是错误的。

    描述符的机制,在我看来,只是抢占了访问顺序,而具体的逻辑却要因地制宜,视情况而定。

    如果要把 math,chinese,english  这三个变量变成实例之间相互隔离的属性,应该这么写。

    class Score:     def __init__(self, subject):         self.name = subject     def __get__(self, instance, owner):         return instance.__dict__[self.name]     def __set__(self, instance, value):         if 0 <= value <= 100:             instance.__dict__[self.name] = value         else:             raise ValueError class Student:     math = Score("math")     chinese = Score("chinese")     english = Score("english")     def __init__(self, math, chinese, english):         self.math = math         self.chinese = chinese         self.english = english     def __repr__(self):         return "<Student math:{}, chinese:{}, english:{}>".format(self.math, self.chinese, self.english)

    引导程序逻辑进入描述符之后,不管你是获取属性,还是设置属性,都是直接作用于 instance 的。

    这段代码,你可以仔细和前面的对比一下。

    不难看出:

    之前的错误代码,更像是把描述符当做了存储节点。

    之后的正确代码,则是把描述符直接当做代理,本身不存储值。

    以上便是我对描述符的全部分享,希望能对你有所帮助。

    Processed: 0.012, SQL: 8