某种产品中,合格品率为85%,一个合格品被检查成次品的概率是10%,一个次品被检查成合格品的概率为5%,问题:求一个被检查成合格品的产品确实为合格品的概率()? A.0.99% B.0.85% C.0.75% D.0.915%
0.99%
这是一道贝叶斯问题
首先分事件 事件A:产品合格 事件B:检查合格由题干得知: P ( A ) = 0.85 P(A)=0.85 P(A)=0.85, P ( B ˉ ∣ A ) = 0.1 P(\bar{B}|A)=0.1 P(Bˉ∣A)=0.1, P ( B ∣ A ˉ ) = 0.05 P(B|\bar{A})=0.05 P(B∣Aˉ)=0.05 求:检查合格的产品为合格的概率 P ( A ∣ B ) P(A|B) P(A∣B)解: P ( A ∣ B ) P(A|B) P(A∣B)= P ( A B ) P ( B ) \frac{P(AB)}{P(B)} P(B)P(AB)= P ( B ∣ A ) P ( A ) P ( A ) P ( B ∣ A ) + P ( A ˉ ) P ( B ∣ A ˉ ) \frac{P(B|A)P(A) }{P(A)P(B|A) + P(\bar{A})P(B|\bar{A})} P(A)P(B∣A)+P(Aˉ)P(B∣Aˉ)P(B∣A)P(A) = ( 1 − P ( B ˉ ∣ A ) ) P ( A ) P ( A ) ( 1 − P ( B ˉ ∣ A ) ) + P ( A ˉ ) P ( B ∣ A ˉ ) \frac{(1-P(\bar{B}|A))P(A) }{P(A)(1-P(\bar{B}|A)) + P(\bar{A})P(B|\bar{A})} P(A)(1−P(Bˉ∣A))+P(Aˉ)P(B∣Aˉ)(1−P(Bˉ∣A))P(A) = ( 1 − 0.1 ) × 0.85 0.85 × ( 1 − 0.1 ) + 0.15 × 0.05 \frac{(1-0.1)\times0.85}{0.85\times(1-0.1) + 0.15\times 0.05} 0.85×(1−0.1)+0.15×0.05(1−0.1)×0.85= 0.9902