Balanced Lineup(线段树)

    科技2025-06-04  25

    题目传送门

    Balanced Lineup

    题目大意

    一片绿地的N(1≤N≤50000)颗树排成一排,q次查询,每次查询区间最大值和最小值之差

    思路

    很ez的线段树了,更新和push_down都不需要,lazy标记也无 直接线段树维护区间最大值和最小值即可

    AC Code

    #include<cstdio> #include<algorithm> #include<iostream> #include<cstring> using namespace std; typedef pair<int, int > PII; #define debug(a) cout<<#a<<"="<<a<<endl; #define INF 0x3f3f3f3f const int N=5e4 +9; int n, q, x, y; int a[N]; struct segtree{ int l, r; int minv, maxv; }tr[N<<2]; inline int read() { int ans=0; char last=' ',ch=getchar(); while(ch<'0'||ch>'9') last=ch,ch=getchar(); while(ch>='0'&&ch<='9') ans=ans*10+ch-'0',ch=getchar(); if(last=='-') ans=-ans; return ans; } inline int lc(int p) {return p<<1;} inline int rc(int p) {return p<<1|1;} inline void push_up(int p){ tr[p].maxv=max(tr[lc(p)].maxv, tr[rc(p)].maxv); tr[p].minv=min(tr[lc(p)].minv, tr[rc(p)].minv); } inline void build(int p, int l, int r){ tr[p].l=l, tr[p].r=r; if(l==r) {tr[p].maxv=tr[p].minv=a[l]; return ;} int mid=(l+r)>>1; build(lc(p), l, mid); build(rc(p), mid+1, r); push_up(p); } inline PII query(int p, int l, int r,int x, int y){ if(x>r || y<l) return PII(-INF, INF); if(l<=x && y<=r) return PII(tr[p].maxv, tr[p].minv); int mid=(x+y)>>1; PII ql=query(lc(p), l, r, x, mid); PII qr=query(rc(p), l, r, mid+1, y); return PII(max(ql.first, qr.first), min(ql.second, qr.second)); } int main(){ n=read(); q=read(); for(int i=1; i<=n; i++) a[i]=read(); build(1,1,n); for(int i=1; i<=q; i++){ x=read(); y=read(); PII a=query(1,x,y,1,n); cout<<a.first-a.second<<endl; } return 0; }
    Processed: 0.010, SQL: 8