目录
什么是Densenet代码下载Densenet1、Densenet的整体结构2、DenseBlock3、Transition Layer
网络实现代码
什么是Densenet
ResNet模型的出现使得深度学习神经网络可以变得更深,进而实现了更高的准确度。ResNet模型的核心是通过建立前面层与后面层之间的短路连接(shortcuts),这有助于训练过程中梯度的反向传播,从而能训练出更深的CNN网络。
DenseNet模型,它的基本思路与ResNet一致,也是建立前面层与后面层的短路连接,不同的是,但是它建立的是前面所有层与后面层的密集连接。
DenseNet还有一个特点是实现了特征重用。
这些特点让DenseNet在参数和计算成本更少的情形下实现比ResNet更优的性能。
DenseNet示意图如下:
代码下载
https://github.com/bubbliiiing/classic-convolution-network
Densenet
1、Densenet的整体结构
如图所示Densenet由DenseBlock和中间的间隔模块Transition Layer组成。 1、DenseBlock:DenseBlock指的就是DenseNet特有的模块,如下图所示,前面所有层与后面层的具有密集连接,在同一个DenseBlock当中,特征层的高宽不会发生改变,但是通道数会发生改变。
2、Transition Layer:Transition Layer是将不同DenseBlock之间进行连接的模块,主要功能是整合上一个DenseBlock获得的特征,并且缩小上一个DenseBlock的宽高,在Transition Layer中,一般会使用一个步长为2的AveragePooling2D缩小特征层的宽高。
2、DenseBlock
DenseBlock的实现示意图如图所示:
以前获得的特征会在保留后不断的堆叠起来。
以一个简单例子来表现一下具体的DenseBlock的流程: 假设输入特征层为X0 1、对x0进行一次1x1卷积调整通道数到4*32后,再利用3x3卷积获得一个32通道的特征层,此时会获得一个shape为(h,w,32)的特征层x1。 2、将获得的x1和初始的x0堆叠,获得一个新的特征层,这个特征层会同时保留初始x0的特征也会保留经过卷积处理后的特征。 3、反复经过步骤1、2的处理,原始的特征会一直得到保留,经过卷积处理后的特征也会得到保留。当网络程度不断加深,就可以实现前面所有层与后面层的具有密集连接。
实现代码为:
def
dense_block(x
, blocks
, name
):
for i in
range(blocks
):
x
= conv_block(x
, 32, name
=name
+ '_block' + str(i
+ 1))
return x
def
conv_block(x
, growth_rate
, name
):
bn_axis
= 3
x1
= layers
.BatchNormalization(axis
=bn_axis
,
epsilon
=1.001e-5,
name
=name
+ '_0_bn')(x
)
x1
= layers
.Activation('relu', name
=name
+ '_0_relu')(x1
)
x1
= layers
.Conv2D(4 * growth_rate
, 1,
use_bias
=False
,
name
=name
+ '_1_conv')(x1
)
x1
= layers
.BatchNormalization(axis
=bn_axis
, epsilon
=1.001e-5,
name
=name
+ '_1_bn')(x1
)
x1
= layers
.Activation('relu', name
=name
+ '_1_relu')(x1
)
x1
= layers
.Conv2D(growth_rate
, 3,
padding
='same',
use_bias
=False
,
name
=name
+ '_2_conv')(x1
)
x
= layers
.Concatenate(axis
=bn_axis
, name
=name
+ '_concat')([x
, x1
])
return x
3、Transition Layer
Transition Layer将不同DenseBlock之间进行连接的模块,主要功能是整合上一个DenseBlock获得的特征,并且缩小上一个DenseBlock的宽高,在Transition Layer中,一般会使用一个步长为2的AveragePooling2D缩小特征层的宽高。 实现代码为:
def
transition_block(x
, reduction
, name
):
bn_axis
= 3
x
= layers
.BatchNormalization(axis
=bn_axis
, epsilon
=1.001e-5,
name
=name
+ '_bn')(x
)
x
= layers
.Activation('relu', name
=name
+ '_relu')(x
)
x
= layers
.Conv2D(int(backend
.int_shape(x
)[bn_axis
] * reduction
), 1,
use_bias
=False
,
name
=name
+ '_conv')(x
)
x
= layers
.AveragePooling2D(2, strides
=2, name
=name
+ '_pool')(x
)
return x
网络实现代码
from keras
.preprocessing import image
from keras
.models import Model
from keras import layers
from keras
.applications import imagenet_utils
from keras
.applications
.imagenet_utils import decode_predictions
from keras
.utils
.data_utils import get_file
from keras import backend
import numpy as np
BASE_WEIGTHS_PATH
= (
'https://github.com/keras-team/keras-applications/'
'releases/download/densenet/')
DENSENET121_WEIGHT_PATH
= (
BASE_WEIGTHS_PATH
+
'densenet121_weights_tf_dim_ordering_tf_kernels.h5')
DENSENET169_WEIGHT_PATH
= (
BASE_WEIGTHS_PATH
+
'densenet169_weights_tf_dim_ordering_tf_kernels.h5')
DENSENET201_WEIGHT_PATH
= (
BASE_WEIGTHS_PATH
+
'densenet201_weights_tf_dim_ordering_tf_kernels.h5')
def
dense_block(x
, blocks
, name
):
for i in
range(blocks
):
x
= conv_block(x
, 32, name
=name
+ '_block' + str(i
+ 1))
return x
def
conv_block(x
, growth_rate
, name
):
bn_axis
= 3
x1
= layers
.BatchNormalization(axis
=bn_axis
,
epsilon
=1.001e-5,
name
=name
+ '_0_bn')(x
)
x1
= layers
.Activation('relu', name
=name
+ '_0_relu')(x1
)
x1
= layers
.Conv2D(4 * growth_rate
, 1,
use_bias
=False
,
name
=name
+ '_1_conv')(x1
)
x1
= layers
.BatchNormalization(axis
=bn_axis
, epsilon
=1.001e-5,
name
=name
+ '_1_bn')(x1
)
x1
= layers
.Activation('relu', name
=name
+ '_1_relu')(x1
)
x1
= layers
.Conv2D(growth_rate
, 3,
padding
='same',
use_bias
=False
,
name
=name
+ '_2_conv')(x1
)
x
= layers
.Concatenate(axis
=bn_axis
, name
=name
+ '_concat')([x
, x1
])
return x
def
transition_block(x
, reduction
, name
):
bn_axis
= 3
x
= layers
.BatchNormalization(axis
=bn_axis
, epsilon
=1.001e-5,
name
=name
+ '_bn')(x
)
x
= layers
.Activation('relu', name
=name
+ '_relu')(x
)
x
= layers
.Conv2D(int(backend
.int_shape(x
)[bn_axis
] * reduction
), 1,
use_bias
=False
,
name
=name
+ '_conv')(x
)
x
= layers
.AveragePooling2D(2, strides
=2, name
=name
+ '_pool')(x
)
return x
def
DenseNet(blocks
,
input_shape
=None
,
classes
=1000,
**kwargs
):
img_input
= layers
.Input(shape
=input_shape
)
bn_axis
= 3
#
224,224,3 -> 112,112,64
x
= layers
.ZeroPadding2D(padding
=((3, 3), (3, 3)))(img_input
)
x
= layers
.Conv2D(64, 7, strides
=2, use_bias
=False
, name
='conv1/conv')(x
)
x
= layers
.BatchNormalization(
axis
=bn_axis
, epsilon
=1.001e-5, name
='conv1/bn')(x
)
x
= layers
.Activation('relu', name
='conv1/relu')(x
)
#
112,112,64 -> 56,56,64
x
= layers
.ZeroPadding2D(padding
=((1, 1), (1, 1)))(x
)
x
= layers
.MaxPooling2D(3, strides
=2, name
='pool1')(x
)
#
56,56,64 -> 56,56,64+32*block
[0]
# Densenet121 56,56,64 -> 56,56,64+32*6 == 56,56,256
x
= dense_block(x
, blocks
[0], name
='conv2')
#
56,56,64+32*block
[0] -> 28,28,32+16*block
[0]
# Densenet121 56,56,256 -> 28,28,32+16*6 == 28,28,128
x
= transition_block(x
, 0.5, name
='pool2')
#
28,28,32+16*block
[0] -> 28,28,32+16*block
[0]+32*block
[1]
# Densenet121 28,28,128 -> 28,28,128+32*12 == 28,28,512
x
= dense_block(x
, blocks
[1], name
='conv3')
# Densenet121 28,28,512 -> 14,14,256
x
= transition_block(x
, 0.5, name
='pool3')
# Densenet121 14,14,256 -> 14,14,256+32*block[2] == 14,14,1024
x
= dense_block(x
, blocks
[2], name
='conv4')
# Densenet121 14,14,1024 -> 7,7,512
x
= transition_block(x
, 0.5, name
='pool4')
# Densenet121 7,7,512 -> 7,7,256+32*block[3] == 7,7,1024
x
= dense_block(x
, blocks
[3], name
='conv5')
x
= layers
.BatchNormalization(axis
=bn_axis
, epsilon
=1.001e-5, name
='bn')(x
)
x
= layers
.Activation('relu', name
='relu')(x
)
x
= layers
.GlobalAveragePooling2D(name
='avg_pool')(x
)
x
= layers
.Dense(classes
, activation
='softmax', name
='fc1000')(x
)
inputs
= img_input
if blocks
== [6, 12, 24, 16]:
model
= Model(inputs
, x
, name
='densenet121')
elif blocks
== [6, 12, 32, 32]:
model
= Model(inputs
, x
, name
='densenet169')
elif blocks
== [6, 12, 48, 32]:
model
= Model(inputs
, x
, name
='densenet201')
else:
model
= Model(inputs
, x
, name
='densenet')
return model
def
DenseNet121(input_shape
=[224,224,3],
classes
=1000,
**kwargs
):
return DenseNet([6, 12, 24, 16],
input_shape
, classes
,
**kwargs
)
def
DenseNet169(input_shape
=[224,224,3],
classes
=1000,
**kwargs
):
return DenseNet([6, 12, 32, 32],
input_shape
, classes
,
**kwargs
)
def
DenseNet201(input_shape
=[224,224,3],
classes
=1000,
**kwargs
):
return DenseNet([6, 12, 48, 32],
input_shape
, classes
,
**kwargs
)
def
preprocess_input(x
):
x
/= 255.
mean
= [0.485, 0.456, 0.406]
std
= [0.229, 0.224, 0.225]
x
[..., 0] -= mean
[0]
x
[..., 1] -= mean
[1]
x
[..., 2] -= mean
[2]
if std is not None
:
x
[..., 0] /= std
[0]
x
[..., 1] /= std
[1]
x
[..., 2] /= std
[2]
return x
if __name__
== '__main__':
# model = DenseNet121()
# weights_path = get_file(
#
'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
# DENSENET121_WEIGHT_PATH,
# cache_subdir='models',
# file_hash='9d60b8095a5708f2dcce2bca79d332c7')
model
= DenseNet169()
weights_path
= get_file(
'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
DENSENET169_WEIGHT_PATH
,
cache_subdir
='models',
file_hash
='d699b8f76981ab1b30698df4c175e90b')
# model = DenseNet201()
# weights_path = get_file(
#
'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
# DENSENET201_WEIGHT_PATH,
# cache_subdir='models',
# file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807')
model
.load_weights(weights_path
)
model
.summary()
img_path
= 'elephant.jpg'
img
= image
.load_img(img_path
, target_size
=(224, 224))
x
= image
.img_to_array(img
)
x
= np
.expand_dims(x
, axis
=0)
x
= preprocess_input(x
)
print('Input image shape:', x
.shape
)
preds
= model
.predict(x
)
print(np
.argmax(preds
))
print('Predicted:', decode_predictions(preds
))