数据预处理
导入玩家的玩牌游戏数据
加载并查看数据信息
player
<- read
.csv("玩家玩牌数据.csv",F)
head(player
)
str(player
)
给数据设置变量名
player_col_names
<- c("用户id","性别","等级","站内好友数","经验值",
"积分","登录总次数","玩牌局数","赢牌局数","身上货币量")
colnames(player
) <- player_col_names
head(player
)
查看缺失值
is
.na(player$玩牌局数
)
table(is
.na(player$玩牌局数
))
sum(is
.na(player$玩牌局数
))
mean(is
.na(player$玩牌局数
))
用md.pattern函数查看player的缺失值模式
md
.pattern(player
)
删除缺失值
当缺失值占比不大时,可以采用缺失值删除的方法
player_full
<- na
.omit(player
)
替换缺失值
如果数据缺失值过大,且对数据总体有一定影响,可以采用替换的方式。
player
[is
.na(player
)] <- 0
转载请注明原文地址:https://blackberry.8miu.com/read-41626.html