线性同余方法(LCG)是一种产生伪随机数的方法。 线性同余法最重要的是定义了三个整数,乘数 a、增量 b和模数 m,其中a,b,m是产生器设定的常数。 为了方便理解,我打个比方 假设现在有随机数X1=1234,乘数a=2,增量b=3,模数m=1000 那么下一个随机数X2=(2*1234+3)%1000=2471%1000=471
解题用到的公式:
目的公式1.Xn+1反推出XnXn=(a-1 (Xn+1 - b))%m2.求aa=((Xn+2-Xn+1)(Xn+1-Xn)-1)%m3.求bb=(Xn+1 - aXn)%m4.求mtn=Xn+1-Xn,m=gcd((tn+1tn-1 - tntn) , (tntn-2 - tn-1tn-1))下面是公式证明: 其实公式证明挺复杂的可以最后看,先看看例题也不错哦 公式1: Xn+1 = aXn + b (mod m) aXn = Xn+1 - b (mod m) Xn = a-1 (Xn+1 - b) (mod m) 模逆运算用到扩展欧几里得算法
MMI = lambda A, n,s=1,t=0,N=0: (n < 2 and t%N or MMI(n, A%n, t, s-A//n*t, N or n),-1)[n<1] #逆元计算公式2 解先行方程组 Xn+2 = aXn+1 + b (mod m) Xn+1 = aXn + b (mod m) Xn+2 - Xn+1 = a(Xn+1-Xn) (mod m) a = (Xn+2 - Xn+1)(Xn+1 - Xn)-1 (mod m) 公式3 Xn+1 = aXn + b (mod m) b = Xn+1 - aXn (mod m) 公式4 设tn = Xn+1 - Xn tn = (aXn+b) - (aXn-1+b) = atn-1(mod m) tn+1tn-1 - tntn = (aatn-1tn-1 - atn-1atn-1) = 0 (mod m) 即Tn = tn+1tn-1 - tntn是m的倍数,求Tn , Tn-1最大公因数即为m m = gcd((tn+1tn-1 - tntn) , (tntn-2 - tn-1tn-1))
好了,然后根据lcg算法有六种ctf题型
这道题的题意是: 他定义了一个变量叫plaintext,长字节字符串flag转换为整数得到的. 定义了一个整数seed = 33477128523140105764301644224721378964069 seed通过10次lcg转换之后再和plaintext二进制异或得到ciphertext getPrime是根据输入length产生随机数的函数 思路: 想要得到flag就要知道plaintext 想要知道plaintext只能通过ciphertext = seed ^ plaintex这个表达式推出 而ciphertext==c我们知道,式子中的seed可以通过他给的初始seed,a,b,n运用算法lcg十次得到 然后根据异或的特性求解出plaintext,即plaintext = seed ^ ciphertext (异或特性,c=a异或b,那么a=b异或c,或者b=a异或c) 解题代码如下
seed = 33477128523140105764301644224721378964069 a = 216636540518719887613942270143367229109002078444183475587474655399326769391 b = 186914533399403414430047931765983818420963789311681346652500920904075344361 n = 155908129777160236018105193822448288416284495517789603884888599242193844951 c = 209481865531297761516458182436122824479565806914713408748457524641378381493 for i in range(10): seed = (a*seed+b)%n plaintext=seed^c print(long_to_bytes(plaintext)) 答案Spirit{0ops!___you_know__LCG!!}根据题意求flag相当于求plaintext,求plaintext相当于求初始seed,我们知道lcg算法十次之后的seed=ciphertext=c,而c我们已知,我们还知道a,b,n。所以这道题要我们从lcg十次之后的seed推算出初始seed 用公式1:Xn=(a-1 (Xn+1 - b))%n 这里a-1是a相对于模数m的逆元,他也有公式
MMI = lambda A, n,s=1,t=0,N=0: (n < 2 and t%N or MMI(n, A%n, t, s-A//n*t, N or n),-1)[n<1] #逆元计算所以解题代码如下
a = 59398519837969938359106832224056187683937568250770488082448642852427682484407513407602969 b = 32787000674666987602016858366912565306237308217749461581158833948068732710645816477126137 n = 43520375935212094874930431059580037292338304730539718469760580887565958566208139467751467 c = 8594514452808046357337682911504074858048299513743867887936794439125949418153561841842276 MMI = lambda A, n,s=1,t=0,N=0: (n < 2 and t%N or MMI(n, A%n, t, s-A//n*t, N or n),-1)[n<1] #逆元计算 ani=MMI(a,n) seed=c for i in range(10): seed = (ani*(seed-b))%n print(long_to_bytes(seed) 答案Spirit{Orzzz__number_the0ry_master!!}求flag相当于求plaintext,plaintext相当于求b,然后在看看我们已知的条件,我们知道a,知道n知道10次lcg中的第6次和第7次的结果,所以我们要根据已知的信息求b 用公式3:b=(Xn+1 - aXn)%n直接求出b 上代码
a = 3227817955364471534349157142678648291258297398767210469734127072571531 n = 2731559135349690299261470294200742325021575620377673492747570362484359 output1 = 56589787378668192618096432693925935599152815634076528548991768641673 output2 = 2551791066380515596393984193995180671839531603273409907026871637002460 b=(output2-a*output1)%n plaintext=b print(long_to_bytes(plaintext)) 答案Spirit{Y0u_@r3_g00d_at__math}第四题给了n和10次lcg的output序列 用公式2:a=((Xn+2-Xn+1)(Xn+1-Xn)-1)%n 用已知信息可以求出a 再用a,output序列,n求出b 根据output序列第一个反推出初始seed 即可求解
n = 714326667532888136341930300469812503108568533171958701229258381897431946521867367344505142446819 output = [683884150135567569054700309393082274015273418755015984639210872641629102776137288905334345358223, 285126221039239401347664578761309935673889193236512702131697050766454881029340147180552409870425, 276893085775448203669487661735680485319995668779836512706851431217470824660349740546793492847822, 670041467944152108349892479463033808393249475608933110640580388877206700116661070302382578388629, 122640993538161410588195475312610802051543155060328971488277224112081166784263153107636108815824, 695403107966797625391061914491496301998976621394944936827202540832952594905520247784142392337171, 108297989103402878258100342544600235524390749601427490182149765480916965811652000881230504838949, 3348901603647903020607356217291999644800579775392251732059562193080862524671584235203807354488, 632094372828241320671255647451901056399237760301503199444470380543753167478243100611604222284853, 54758061879225024125896909645034267106973514243188358677311238070832154883782028437203621709276] MMI = lambda A, n,s=1,t=0,N=0: (n < 2 and t%N or MMI(n, A%n, t, s-A//n*t, N or n),-1)[n<1] #逆元计算 a=(output[2]-output[1])*MMI((output[1]-output[0]),n)%n ani=MMI(a,n) b=(output[1]-a*output[0])%n seed = (ani*(output[0]-b))%n plaintext=seed print(long_to_bytes(plaintext)) 答案Spirit{Gr3at__J0b!_You_can_be___better!}用公式4 解题代码
from Crypto.Util.number import * def gcd(a,b): if(b==0): return a else: return gcd(b,a%b) s = [9997297986272510947766344959498975323136012075787120721424325775003840341552673589487134830298427997676238039214108, 4943092972488023184271739094993470430272327679424224016751930100362045115374960494124801675393555642497051610643836, 6774612894247319645272578624765063875876643849415903973872536662648051668240882405640569448229188596797636795502471, 9334780454901460926052785252362305555845335155501888087843525321238695716687151256717815518958670595053951084051571, 2615136943375677027346821049033296095071476608523371102901038444464314877549948107134114941301290458464611872942706, 11755491858586722647182265446253701221615594136571038555321378377363341368427070357031882725576677912630050307145062, 7752070270905673490804344757589080653234375679657568428025599872155387643476306575613147681330227562712490805492345, 8402957532602451691327737154745340793606649602871190615837661809359377788072256203797817090151599031273142680590748, 2802440081918604590502596146113670094262600952020687184659605307695151120589816943051322503094363578916773414004662, 5627226318035765837286789021891141596394835871645925685252241680021740265826179768429792645576780380635014113687982] t = [] for i in range(9): t.append(s[i]-s[i-1]) all_n = [] for i in range(7): all_n.append(gcd((t[i+1]*t[i-1]-t[i]*t[i]), (t[i+2]*t[i]-t[i+1]*t[i+1]))) MMI = lambda A, n,s=1,t=0,N=0: (n < 2 and t%N or MMI(n, A%n, t, s-A//n*t, N or n),-1)[n<1] #逆元计算 for n in all_n: n=abs(n) if n==1: continue a=(s[2]-s[1])*MMI((s[1]-s[0]),n)%n ani=MMI(a,n) b=(s[1]-a*s[0])%n seed = (ani*(s[0]-b))%n plaintext=seed print(long_to_bytes(plaintext))结果
b'\x00' b'\xd6\xce\xc7P)\xf9l\xc7\xc8{h\xf0\xc0\xdcX\xd7q\xc7\xd4\xd1L;\xb7hh*\xc2\xb4\xa3,\xbb\xa1}&\x94Z\xda\x19\x95\xbb\xa6\x93g\xec\xd7\xc6\x15c' b'\xd6\xce\xc7P)\xf9l\xc7\xc8{h\xf0\xc0\xdcX\xd7q\xc7\xd4\xd1L;\xb7hh*\xc2\xb4\xa3,\xbb\xa1}&\x94Z\xda\x19\x95\xbb\xa6\x93g\xec\xd7\xc6\x15c' b'Spirit{final__lcg__is__co0m1ing__are_you_ready?}' b'\xeb\xf7.\xdc!\xe5O\xb4\x11\xed\xf1\xa5\xca\xa1\x9b\x15\xda\x85\xc1\x19\xebGd\n\x93\x04\xb2PW\x9c\xc0^\x8c\xf8\xdd5\xf9\xcf\x1c\xad\x8b\xdd\xde\x1a/\xa6H\x08' b'\xeb\xf7.\xdc!\xe5O\xb4\x11\xed\xf1\xa5\xca\xa1\x9b\x15\xda\x85\xc1\x19\xebGd\n\x93\x04\xb2PW\x9c\xc0^\x8c\xf8\xdd5\xf9\xcf\x1c\xad\x8b\xdd\xde\x1a/\xa6H\x08'