数学物理方法

    科技2025-12-23  19

    第一章 R 3 R^3 R3空间的向量分析

    一、证明以下公式:

    ∵ r ⃗ = x e x ⃗ + y e y ⃗ + z e z ⃗ \because\vec{r}=x\vec{e_{x}}+y\vec{e_{y}}+z\vec{e_{z}} r =xex +yey +zez

    ∵ ▽ = e x ⃗ ∂ ∂ x + e y ⃗ ∂ ∂ y + e z ⃗ ∂ ∂ z \because\triangledown= \vec{e_{x}}\frac{\partial}{\partial x}+ \vec{e_{y}}\frac{\partial}{\partial y}+ \vec{e_{z}}\frac{\partial}{\partial z} =ex x+ey y+ez z

    01. ▽ ⋅ r ⃗ = 3 \triangledown\cdot\vec{r}=3 r =3

    ∴ ▽ ⋅ r ⃗ = ∂ x ∂ x + ∂ y ∂ y + ∂ z ∂ z = 3 \therefore\triangledown\cdot\vec{r}= \frac{\partial x}{\partial x}+ \frac{\partial y}{\partial y}+ \frac{\partial z}{\partial z}=3 r =xx+yy+zz=3

    02. ▽ × r ⃗ = 0 ⃗ \triangledown\times\vec{r}=\vec{0} ×r =0

    ∵ ▽ × r ⃗ = ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z x y z ∣ = ( ∂ z ∂ y − ∂ y ∂ z ) e x ⃗ + ( ∂ x ∂ z − ∂ z ∂ x ) e y ⃗ + ( ∂ y ∂ x − ∂ x ∂ y ) e z ⃗ = 0 ⃗ \because\triangledown\times\vec{r}= \begin{vmatrix} \vec{e_{x}}& \vec{e_{y}} & \vec{e_{z}} \\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x& y & z \end{vmatrix}= (\frac{\partial z}{\partial y}-\frac{\partial y}{\partial z})\vec{e_{x}}+(\frac{\partial x}{\partial z}-\frac{\partial z}{\partial x})\vec{e_{y}}+(\frac{\partial y}{\partial x}-\frac{\partial x}{\partial y})\vec{e_{z}}=\vec{0} ×r =ex xxey yyez zz=(yzzy)ex +(zxxz)ey +(xyyx)ez =0

    03. ▽ ( φ + ψ ) = ▽ φ + ▽ ψ \triangledown(\varphi+\psi)=\triangledown\varphi+\triangledown\psi (φ+ψ)=φ+ψ

    ∵ ▽ ( φ + ψ ) = ∂ ( φ + ψ ) ∂ x e x ⃗ + ∂ ( φ + ψ ) ∂ y e y ⃗ + ∂ ( φ + ψ ) ∂ z e z ⃗ = ( ∂ φ ∂ x e x ⃗ + ∂ φ ∂ y e y ⃗ + ∂ φ ∂ z e z ⃗ ) + ( ∂ ψ ∂ x e x ⃗ + ∂ ψ ∂ y e y ⃗ + ∂ ψ ∂ z e z ⃗ ) = ( ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ ) φ + ( ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ ) ψ = ▽ φ + ▽ ψ \begin{aligned} \because\triangledown(\varphi+\psi)&= \frac{\partial(\varphi+\psi)}{\partial x}\vec{e_{x}}+ \frac{\partial(\varphi+\psi)}{\partial y}\vec{e_{y}}+ \frac{\partial(\varphi+\psi)}{\partial z}\vec{e_{z}}\\&= ( \frac{\partial\varphi}{\partial x}\vec{e_{x}}+ \frac{\partial\varphi}{\partial y}\vec{e_{y}}+ \frac{\partial\varphi}{\partial z}\vec{e_{z}})+ ( \frac{\partial\psi}{\partial x}\vec{e_{x}}+ \frac{\partial\psi}{\partial y}\vec{e_{y}}+ \frac{\partial\psi}{\partial z}\vec{e_{z}})\\&= ( \frac{\partial}{\partial x}\vec{e_{x}}+ \frac{\partial}{\partial y}\vec{e_{y}}+ \frac{\partial}{\partial z}\vec{e_{z}})\varphi+ ( \frac{\partial}{\partial x}\vec{e_{x}}+ \frac{\partial}{\partial y}\vec{e_{y}}+ \frac{\partial}{\partial z}\vec{e_{z}})\psi\\&= \triangledown\varphi+\triangledown\psi \end{aligned} (φ+ψ)=x(φ+ψ)ex +y(φ+ψ)ey +z(φ+ψ)ez =(xφex +yφey +zφez )+(xψex +yψey +zψez )=(xex +yey +zez )φ+(xex +yey +zez )ψ=φ+ψ

    04. ▽ ( φ ψ ) = φ ▽ ψ + ψ ▽ φ \triangledown(\varphi\psi)=\varphi\triangledown\psi+\psi\triangledown\varphi (φψ)=φψ+ψφ

    ∵ ▽ ( φ ψ ) = ∂ ( φ ψ ) ∂ x e x ⃗ + ∂ ( φ ψ ) ∂ y e y ⃗ + ∂ ( φ ψ ) ∂ z e z ⃗ = ( φ ∂ ψ ∂ x + ψ ∂ φ ∂ x ) e x ⃗ + ( φ ∂ ψ ∂ x + ψ ∂ φ ∂ x ) e y ⃗ + ( φ ∂ ψ ∂ x + ψ ∂ φ ∂ x ) e z ⃗ = φ ( ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ ) ψ + ψ ( ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ ) φ = φ ▽ ψ + ψ ▽ φ \begin{aligned} \because\triangledown(\varphi\psi)&= \frac{\partial(\varphi\psi)}{\partial x}\vec{e_{x}}+ \frac{\partial(\varphi\psi)}{\partial y}\vec{e_{y}}+ \frac{\partial(\varphi\psi)}{\partial z}\vec{e_{z}}\\&= (\varphi\frac{\partial\psi}{\partial x}+ \psi\frac{\partial\varphi}{\partial x})\vec{e_{x}}+ (\varphi\frac{\partial\psi}{\partial x}+ \psi\frac{\partial\varphi}{\partial x})\vec{e_{y}}+ (\varphi\frac{\partial\psi}{\partial x}+ \psi\frac{\partial\varphi}{\partial x})\vec{e_{z}}\\&= \varphi( \frac{\partial}{\partial x}\vec{e_{x}}+ \frac{\partial}{\partial y}\vec{e_{y}}+ \frac{\partial}{\partial z}\vec{e_{z}})\psi+ \psi( \frac{\partial}{\partial x}\vec{e_{x}}+ \frac{\partial}{\partial y}\vec{e_{y}}+ \frac{\partial}{\partial z}\vec{e_{z}})\varphi\\&= \varphi\triangledown\psi+\psi\triangledown\varphi \end{aligned} (φψ)=x(φψ)ex +y(φψ)ey +z(φψ)ez =(φxψ+ψxφ)ex +(φxψ+ψxφ)ey +(φxψ+ψxφ)ez =φ(xex +yey +zez )ψ+ψ(xex +yey +zez )φ=φψ+ψφ

    05. ▽ ⋅ ( A ⃗ + B ⃗ ) = ▽ ⋅ A ⃗ + ▽ ⋅ B ⃗ \triangledown\cdot(\vec{A}+\vec{B})=\triangledown\cdot\vec{A}+\triangledown\cdot\vec{B} (A +B )=A +B

    ∵ ▽ ⋅ ( A ⃗ + B ⃗ ) = ( ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ ) ⋅ [ ( A x + B x ) e x ⃗ + ( A y + B y ) e y ⃗ + ( A z + B z ) e z ⃗ ] \because\triangledown\cdot(\vec{A}+\vec{B})= ( \frac{\partial}{\partial x}\vec{e_{x}}+ \frac{\partial}{\partial y}\vec{e_{y}}+ \frac{\partial}{\partial z}\vec{e_{z}})\cdot [ (A_x+B_x)\vec{e_{x}}+ (A_y+B_y)\vec{e_{y}}+ (A_z+B_z)\vec{e_{z}}] (A +B )=(xex +yey +zez )[(Ax+Bx)ex +(Ay+By)ey +(Az+Bz)ez ]

    ∴ ▽ ⋅ ( A ⃗ + B ⃗ ) = ∂ ( A x + B x ) ∂ x + ∂ ( A y + B y ) ∂ y + ∂ ( A z + B z ) ∂ z = ( ∂ A x ∂ x + ∂ B x ∂ x ) + ( ∂ A y ∂ y + ∂ B y ∂ y ) + ( ∂ A z ∂ z + ∂ B z ∂ z ) = ( ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z ) + ( ∂ B x ∂ x + ∂ B y ∂ y + ∂ B z ∂ z ) = ▽ ⋅ A ⃗ + ▽ ⋅ B ⃗ \begin{aligned} \therefore\triangledown\cdot(\vec{A}+\vec{B})&= \frac{\partial(A_x+B_x)}{\partial x}+ \frac{\partial(A_y+B_y)}{\partial y}+ \frac{\partial(A_z+B_z)}{\partial z}\\&= (\frac{\partial A_x}{\partial x}+ \frac{\partial B_x}{\partial x})+ (\frac{\partial A_y}{\partial y}+ \frac{\partial B_y}{\partial y})+ (\frac{\partial A_z}{\partial z}+ \frac{\partial B_z}{\partial z})\\&= (\frac{\partial A_x}{\partial x}+ \frac{\partial A_y}{\partial y}+ \frac{\partial A_z}{\partial z})+ (\frac{\partial B_x}{\partial x}+ \frac{\partial B_y}{\partial y}+ \frac{\partial B_z}{\partial z})\\&= \triangledown\cdot\vec{A}+\triangledown\cdot\vec{B} \end{aligned} (A +B )=x(Ax+Bx)+y(Ay+By)+z(Az+Bz)=(xAx+xBx)+(yAy+yBy)+(zAz+zBz)=(xAx+yAy+zAz)+(xBx+yBy+zBz)=A +B

    06. ▽ × ( A ⃗ + B ⃗ ) = ▽ × A ⃗ + ▽ × B ⃗ \triangledown\times(\vec{A}+\vec{B})=\triangledown\times\vec{A}+\triangledown\times\vec{B} ×(A +B )=×A +×B

    ∵ ▽ × ( A ⃗ + B ⃗ ) = ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z ( A x + B x ) ( A y + B y ) ( A z + B z ) ∣ = ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ + ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z B x B y B z ∣ = ▽ × A ⃗ + ▽ × B ⃗ \begin{aligned} \because\triangledown\times(\vec{A}+\vec{B})&= \begin{vmatrix} \vec{e_{x}}& \vec{e_{y}} & \vec{e_{z}} \\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (A_x+B_x)& (A_y+B_y) & (A_z+B_z) \end{vmatrix}\\&= \begin{vmatrix} \vec{e_{x}}& \vec{e_{y}} & \vec{e_{z}} \\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x& A_y & A_z \end{vmatrix}+ \begin{vmatrix} \vec{e_{x}}& \vec{e_{y}} & \vec{e_{z}} \\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ B_x& B_y & B_z \end{vmatrix}\\&= \triangledown\times\vec{A}+\triangledown\times\vec{B} \end{aligned} ×(A +B )=ex x(Ax+Bx)ey y(Ay+By)ez z(Az+Bz)=ex xAxey yAyez zAz+ex xBxey yByez zBz=×A +×B

    07. ▽ ⋅ ( φ A ⃗ ) = A ⃗ ⋅ ▽ φ + φ ▽ ⋅ A ⃗ \triangledown\cdot(\varphi\vec{A})=\vec{A}\cdot\triangledown\varphi+\varphi\triangledown\cdot\vec{A} (φA )=A φ+φA

    ∵ ▽ ⋅ ( φ A ⃗ ) = ( ∂ ∂ x e x ⃗ + ∂ ∂ y e y ⃗ + ∂ ∂ z e z ⃗ ) ⋅ [ φ ( A x e x ⃗ + A y e y ⃗ + A z e z ⃗ ) ] = ∂ ( u A x ) ∂ x + ∂ ( u A y ) ∂ y + ∂ ( u A z ) ∂ z = ( φ ∂ A x ∂ x + A x ∂ φ ∂ x ) + ( φ ∂ A y ∂ y + A y ∂ φ ∂ y ) + ( φ ∂ A z ∂ z + A z ∂ φ ∂ z ) = ( A x ∂ φ ∂ x + A y ∂ φ ∂ x + A z ∂ φ ∂ x ) + φ ( ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z ) = A ⃗ ⋅ ▽ φ + φ ▽ ⋅ A ⃗ \begin{aligned}\because\triangledown\cdot(\varphi\vec{A})&= (\frac{\partial}{\partial x}\vec{e_{x}}+ \frac{\partial}{\partial y}\vec{e_{y}}+ \frac{\partial}{\partial z}\vec{e_{z}})\cdot [\varphi(A_x\vec{e_{x}}+A_y\vec{e_{y}}+A_z\vec{e_{z}})]\\&= \frac{\partial (uA_x)}{\partial x}+ \frac{\partial (uA_y)}{\partial y}+ \frac{\partial (uA_z)}{\partial z}\\&= (\varphi\frac{\partial A_x}{\partial x}+ A_x\frac{\partial \varphi}{\partial x})+ (\varphi\frac{\partial A_y}{\partial y}+ A_y\frac{\partial \varphi}{\partial y})+ (\varphi\frac{\partial A_z}{\partial z}+ A_z\frac{\partial \varphi}{\partial z})\\&= ( A_x\frac{\partial \varphi}{\partial x}+ A_y\frac{\partial \varphi}{\partial x}+ A_z\frac{\partial \varphi}{\partial x})+ \varphi( \frac{\partial A_x}{\partial x}+ \frac{\partial A_y}{\partial y}+ \frac{\partial A_z}{\partial z})\\&= \vec{A}\cdot\triangledown\varphi+\varphi\triangledown\cdot\vec{A} \end{aligned} (φA )=(xex +yey +zez )[φ(Axex +Ayey +Azez )]=x(uAx)+y(uAy)+z(uAz)=(φxAx+Axxφ)+(φyAy+Ayyφ)+(φzAz+Azzφ)=(Axxφ+Ayxφ+Azxφ)+φ(xAx+yAy+zAz)=A φ+φA

    08. ▽ × ( φ A ⃗ ) = A ⃗ × ▽ φ + φ ▽ × A ⃗ \triangledown\times(\varphi\vec{A})=\vec{A}\times\triangledown\varphi+\varphi\triangledown\times\vec{A} ×(φA )=A ×φ+φ×A

    ∵ ▽ × ( φ A ⃗ ) = ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z φ A x φ A y φ A z ∣ = ( ∂ ( φ A z ) ∂ y − ∂ ( φ A y ) ∂ z ) e x ⃗ + ( ∂ ( φ A x ) ∂ z − ∂ ( φ A z ) ∂ x ) e y ⃗ + ( ∂ ( φ A y ) ∂ x − ∂ ( φ A x ) ∂ y ) e z ⃗ \begin{aligned} \because\triangledown\times(\varphi\vec{A})&= \begin{vmatrix} \vec{e_{x}}& \vec{e_{y}} & \vec{e_{z}} \\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \varphi A_x& \varphi A_y & \varphi A_z \end{vmatrix}\\&= (\frac{\partial(\varphi A_z)}{\partial y}- \frac{\partial(\varphi A_y)}{\partial z})\vec{e_x}\\&+ (\frac{\partial(\varphi A_x)}{\partial z}- \frac{\partial(\varphi A_z)}{\partial x})\vec{e_y}\\&+ (\frac{\partial(\varphi A_y)}{\partial x}- \frac{\partial(\varphi A_x)}{\partial y})\vec{e_z} \end{aligned} ×(φA )=ex xφAxey yφAyez zφAz=(y(φAz)z(φAy))ex +(z(φAx)x(φAz))ey +(x(φAy)y(φAx))ez

    ∴ ▽ × ( φ A ⃗ ) = [ ( φ ∂ A z ∂ y + A z ∂ φ ∂ y ) − ( φ ∂ A y ∂ z + A y ∂ φ ∂ z ) ] e x ⃗ + [ ( φ ∂ A x ∂ z + A x ∂ φ ∂ z ) − ( φ ∂ A z ∂ x + A z ∂ φ ∂ x ) ] e y ⃗ + [ ( φ ∂ A y ∂ x + A y ∂ φ ∂ x ) − ( φ ∂ A x ∂ y + A x ∂ φ ∂ y ) ] e z ⃗ = [ ( A z ∂ φ ∂ y − A y ∂ φ ∂ z ) e x ⃗ + ( A x ∂ φ ∂ z − A z ∂ φ ∂ x ) e y ⃗ + ( A y ∂ φ ∂ x − A x ∂ φ ∂ y ) e z ⃗ ] + φ [ ( ∂ A z ∂ y − ∂ A y ∂ z ) e x ⃗ + ( ∂ A x ∂ z − ∂ A z ∂ x ) e y ⃗ + ( ∂ A y ∂ x − ∂ A x ∂ y ) e z ⃗ ] = A ⃗ × ▽ φ + φ ▽ × A ⃗ \begin{aligned} \therefore\triangledown\times(\varphi\vec{A})&= [(\varphi\frac{\partial A_z}{\partial y}+A_z\frac{\partial \varphi}{\partial y})- (\varphi\frac{\partial A_y}{\partial z}+A_y\frac{\partial \varphi}{\partial z})]\vec{e_x}\\&+ [(\varphi\frac{\partial A_x}{\partial z}+A_x\frac{\partial \varphi}{\partial z})- (\varphi\frac{\partial A_z}{\partial x}+A_z\frac{\partial \varphi}{\partial x})]\vec{e_y}\\&+ [(\varphi\frac{\partial A_y}{\partial x}+A_y\frac{\partial \varphi}{\partial x})- (\varphi\frac{\partial A_x}{\partial y}+A_x\frac{\partial \varphi}{\partial y})]\vec{e_z}\\&=[ (A_z\frac{\partial \varphi}{\partial y}- A_y\frac{\partial \varphi}{\partial z})\vec{e_x}+ (A_x\frac{\partial \varphi}{\partial z}- A_z\frac{\partial \varphi}{\partial x})\vec{e_y}+ (A_y\frac{\partial \varphi}{\partial x}- A_x\frac{\partial \varphi}{\partial y})\vec{e_z}]\\&+ \varphi[ (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec{e_x}+ (\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec{e_y}+ (\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec{e_z}]\\&= \vec{A}\times\triangledown\varphi+\varphi\triangledown\times\vec{A} \end{aligned} ×(φA )=[(φyAz+Azyφ)(φzAy+Ayzφ)]ex +[(φzAx+Axzφ)(φxAz+Azxφ)]ey +[(φxAy+Ayxφ)(φyAx+Axyφ)]ez =[(AzyφAyzφ)ex +(AxzφAzxφ)ey +(AyxφAxyφ)ez ]+φ[(yAzzAy)ex +(zAxxAz)ey +(xAyyAx)ez ]=A ×φ+φ×A

    09. ▽ ⋅ ( A ⃗ × B ⃗ ) = B ⃗ ⋅ ( ▽ × A ⃗ ) + A ⃗ ⋅ ( ▽ × B ⃗ ) \triangledown\cdot(\vec{A}\times\vec{B})=\vec{B}\cdot(\triangledown\times\vec{A})+\vec{A}\cdot(\triangledown\times\vec{B}) (A ×B )=B (×A )+A (×B )

    解法一:

    ∵ ▽ ⋅ ( A ⃗ × B ⃗ ) = ▽ ⋅ ∣ e x ⃗ e y ⃗ e z ⃗ A x A y A z B x B y B z ∣ = ∂ ( A z B y − A y B z ) ∂ x + ∂ ( A z B x − A x B z ) ∂ y + ∂ ( A x B y − A y B x ) ∂ z \begin{aligned} \because\triangledown\cdot(\vec{A}\times\vec{B})&=\triangledown\cdot \begin{vmatrix} \vec{e_{x}}& \vec{e_{y}} & \vec{e_{z}} \\ A_x& A_y & A_z \\ B_x& B_y & B_z \end{vmatrix}\\&= \frac{\partial(A_z B_y-A_y B_z)}{\partial x}+ \frac{\partial(A_z B_x-A_x B_z)}{\partial y}+ \frac{\partial(A_x B_y-A_yB_x)}{\partial z} \end{aligned} (A ×B )=ex AxBxey AyByez AzBz=x(AzByAyBz)+y(AzBxAxBz)+z(AxByAyBx)

    ∴ ▽ ⋅ ( A ⃗ × B ⃗ ) = [ ( A z ∂ B y ∂ x + B y ∂ A z ∂ x ) − ( A y ∂ B z ∂ x + B z ∂ A y ∂ x ) ] + [ ( A z ∂ B x ∂ y + B x ∂ A z ∂ y ) − ( A x ∂ B z ∂ y + B z ∂ A x ∂ y ) ] + [ ( A x ∂ B y ∂ z + B y ∂ A x ∂ z ) − ( A y ∂ B x ∂ z + B x ∂ A y ∂ z ) ] \begin{aligned} \therefore\triangledown\cdot(\vec{A}\times\vec{B})&= [(A_z\frac{\partial B_y}{\partial x}+B_y\frac{\partial A_z}{\partial x})- (A_y\frac{\partial B_z}{\partial x}+B_z\frac{\partial A_y}{\partial x})]\\&+ [(A_z\frac{\partial B_x}{\partial y}+B_x\frac{\partial A_z}{\partial y})- (A_x\frac{\partial B_z}{\partial y}+B_z\frac{\partial A_x}{\partial y})]\\&+ [(A_x\frac{\partial B_y}{\partial z}+B_y\frac{\partial A_x}{\partial z})- (A_y\frac{\partial B_x}{\partial z}+B_x\frac{\partial A_y}{\partial z})] \end{aligned} (A ×B )=[(AzxBy+ByxAz)(AyxBz+BzxAy)]+[(AzyBx+BxyAz)(AxyBz+BzyAx)]+[(AxzBy+ByzAx)(AyzBx+BxzAy)]

    ∴ ▽ ⋅ ( A ⃗ × B ⃗ ) = [ B x ( ∂ A z ∂ y − ∂ A y ∂ z ) + B y ( ∂ A z ∂ x − ∂ A x ∂ z ) + B z ( ∂ A x ∂ y − ∂ A y ∂ x ) ] − [ A x ( ∂ B z ∂ y − ∂ B y ∂ z ) + A y ( ∂ B z ∂ x − ∂ B x ∂ z ) + A z ( ∂ B x ∂ y − ∂ B y ∂ x ) ] = B ⃗ ⋅ ( ▽ × A ⃗ ) + A ⃗ ⋅ ( ▽ × B ⃗ ) \begin{aligned} \therefore\triangledown\cdot(\vec{A}\times\vec{B})&= [ B_x(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})+ B_y(\frac{\partial A_z}{\partial x}-\frac{\partial A_x}{\partial z})+ B_z(\frac{\partial A_x}{\partial y}-\frac{\partial A_y}{\partial x})]\\&- [ A_x(\frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})+ A_y(\frac{\partial B_z}{\partial x}-\frac{\partial B_x}{\partial z})+ A_z(\frac{\partial B_x}{\partial y}-\frac{\partial B_y}{\partial x})]\\&= \vec{B}\cdot(\triangledown\times\vec{A})+\vec{A}\cdot(\triangledown\times\vec{B}) \end{aligned} (A ×B )=[Bx(yAzzAy)+By(xAzzAx)+Bz(yAxxAy)][Ax(yBzzBy)+Ay(xBzzBx)+Az(yBxxBy)]=B (×A )+A (×B )

    解法二:

    ∵ ▽ ⋅ ( A ⃗ × B ⃗ ) = ∂ i ( A ⃗ × B ⃗ ) i = ∂ i ( ε i j k A j B k ) = ε i j k [ ( ∂ i A j ) B k + A j ( ∂ i B k ) ] = B k ε k i j ∂ i A j − A j ε j i k ∂ i B k \begin{aligned} \because\triangledown\cdot(\vec{A}\times\vec{B})&= \partial_i(\vec{A}\times\vec{B})_i\\&= \partial_i(\varepsilon_{ijk}A_jB_k)\\&= \varepsilon_{ijk}[(\partial_iA_j)B_k+A_j(\partial_iB_k)]\\&= B_k\varepsilon_{kij}\partial_iA_j-A_j\varepsilon_{jik}\partial_iB_k \end{aligned} (A ×B )=i(A ×B )i=i(εijkAjBk)=εijk[(iAj)Bk+Aj(iBk)]=BkεkijiAjAjεjikiBk ∴ ▽ ⋅ ( A ⃗ × B ⃗ ) = B ⃗ ⋅ ( ▽ × A ⃗ ) + A ⃗ ⋅ ( ▽ × B ⃗ ) \therefore\triangledown\cdot(\vec{A}\times\vec{B})= \vec{B}\cdot(\triangledown\times\vec{A})+\vec{A}\cdot(\triangledown\times\vec{B}) (A ×B )=B (×A )+A (×B )

    10. ▽ × ( A ⃗ × B ⃗ ) = ( B ⃗ ⋅ ▽ ) A ⃗ − B ⃗ ( ▽ ⋅ A ⃗ ) − ( A ⃗ ⋅ ▽ ) B ⃗ + A ⃗ ( ▽ ⋅ B ⃗ ) \triangledown\times(\vec{A}\times\vec{B})=(\vec{B}\cdot\triangledown)\vec{A}-\vec{B}(\triangledown\cdot\vec{A})-(\vec{A}\cdot\triangledown)\vec{B}+\vec{A}(\triangledown\cdot\vec{B}) ×(A ×B )=(B )A B (A )(A )B +A (B )

    解法一:

    根据哈密顿算子的微分性质运算(常矢和变矢):

    ∵ ▽ × ( A ⃗ × B ⃗ ) = [ ▽ × ( A ⃗ × B ⃗ ) ] f o r B ⃗ + [ ▽ × ( A ⃗ × B ⃗ ) ] f o r A ⃗ \because\triangledown\times(\vec{A}\times\vec{B})=[\triangledown\times(\vec{A}\times\vec{B})]for\vec{B}+[\triangledown\times(\vec{A}\times\vec{B})]for\vec{A} ×(A ×B )=[×(A ×B )]forB +[×(A ×B )]forA

    根据二重矢量积公式:

    ∴ ▽ × ( A ⃗ × B ⃗ ) = [ A ⃗ ( ▽ ⋅ B ⃗ ) − ( A ⃗ ⋅ ▽ ) B ⃗ ] f o r B ⃗ + [ ( B ⃗ ⋅ ▽ ) A ⃗ − B ⃗ ( ▽ ⋅ A ⃗ ) ] f o r A ⃗ \therefore\triangledown\times(\vec{A}\times\vec{B})=[\vec{A}(\triangledown\cdot\vec{B})-(\vec{A}\cdot\triangledown)\vec{B}]for\vec{B}+[(\vec{B}\cdot\triangledown)\vec{A}-\vec{B}(\triangledown\cdot\vec{A})]for\vec{A} ×(A ×B )=[A (B )(A )B ]forB +[(B )A B (A )]forA

    ∴ ▽ × ( A ⃗ × B ⃗ ) = ( B ⃗ ⋅ ▽ ) A ⃗ − B ⃗ ( ▽ ⋅ A ⃗ ) − ( A ⃗ ⋅ ▽ ) B ⃗ + A ⃗ ( ▽ ⋅ B ⃗ ) \therefore\triangledown\times(\vec{A}\times\vec{B})=(\vec{B}\cdot\triangledown)\vec{A}-\vec{B}(\triangledown\cdot\vec{A})-(\vec{A}\cdot\triangledown)\vec{B}+\vec{A}(\triangledown\cdot\vec{B}) ×(A ×B )=(B )A B (A )(A )B +A (B )

    解法二:

    ∵ ▽ × ( A ⃗ × B ⃗ ) = ε i j k e ⃗ i ∂ j ( A ⃗ × B ⃗ ) k = ε i j k e ⃗ i ∂ j ε k l m A ⃗ l B ⃗ m = e ⃗ i ε k i j ε k l m ∂ j A ⃗ l B ⃗ m = e ⃗ i ( δ i l δ j m − δ i m δ j l ) ∂ j A ⃗ l B ⃗ m = e ⃗ i A ⃗ l ∂ j B ⃗ m − e ⃗ i B ⃗ m ∂ j A ⃗ l = A ⃗ ( ▽ ⋅ B ⃗ ) + ( B ⃗ ⋅ ▽ ) A ⃗ − B ⃗ ( ▽ ⋅ A ⃗ ) − ( A ⃗ ⋅ ▽ ) B ⃗ \begin{aligned} \because\triangledown\times(\vec{A}\times\vec{B})&= \varepsilon_{ijk}\vec{e}_i\partial_j(\vec{A}\times\vec{B})_k\\&= \varepsilon_{ijk}\vec{e}_i\partial_j\varepsilon_{klm}\vec{A}_l\vec{B}_m\\&= \vec{e}_i\varepsilon_{kij}\varepsilon_{klm}\partial_j\vec{A}_l\vec{B}_m\\&= \vec{e}_i(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl})\partial_j\vec{A}_l\vec{B}_m\\&= \vec{e}_i\vec{A}_l\partial_j\vec{B}_m- \vec{e}_i\vec{B}_m\partial_j\vec{A}_l\\&= \vec{A}(\triangledown\cdot\vec{B})+ (\vec{B}\cdot\triangledown)\vec{A}- \vec{B}(\triangledown\cdot\vec{A})- (\vec{A}\cdot\triangledown)\vec{B} \end{aligned} ×(A ×B )=εijke ij(A ×B )k=εijke ijεklmA lB m=e iεkijεklmjA lB m=e i(δilδjmδimδjl)jA lB m=e iA ljB me iB mjA l=A (B )+(B )A B (A )(A )B

    ∴ ▽ × ( A ⃗ × B ⃗ ) = ( B ⃗ ⋅ ▽ ) A ⃗ − B ⃗ ( ▽ ⋅ A ⃗ ) − ( A ⃗ ⋅ ▽ ) B ⃗ + A ⃗ ( ▽ ⋅ B ⃗ ) \therefore\triangledown\times(\vec{A}\times\vec{B})=(\vec{B}\cdot\triangledown)\vec{A}-\vec{B}(\triangledown\cdot\vec{A})-(\vec{A}\cdot\triangledown)\vec{B}+\vec{A}(\triangledown\cdot\vec{B}) ×(A ×B )=(B )A B (A )(A )B +A (B )

    11. ▽ ( A ⃗ ⋅ B ⃗ ) = ( B ⃗ ⋅ ▽ ) A ⃗ + ( A ⃗ ⋅ ▽ ) B ⃗ + B ⃗ × ( ▽ × A ⃗ ) + A ⃗ × ( ▽ × B ⃗ ) \triangledown(\vec{A}\cdot\vec{B})=(\vec{B}\cdot\triangledown)\vec{A}+(\vec{A}\cdot\triangledown)\vec{B}+\vec{B}\times(\triangledown\times\vec{A})+\vec{A}\times(\triangledown\times\vec{B}) (A B )=(B )A +(A )B +B ×(×A )+A ×(×B )

    ∵ ▽ ( A ⃗ ⋅ B ⃗ ) = [ ▽ ( A ⃗ ⋅ B ⃗ ) ] f o r B ⃗ + [ ▽ ( A ⃗ ⋅ B ⃗ ) ] f o r A ⃗ \begin{aligned} \because\triangledown(\vec{A}\cdot\vec{B})&= [\triangledown(\vec{A}\cdot\vec{B})]for\vec{B}+ [\triangledown(\vec{A}\cdot\vec{B})]for\vec{A}\\ \end{aligned} (A B )=[(A B )]forB +[(A B )]forA

    ∴ ▽ ( A ⃗ ⋅ B ⃗ ) = [ ( A ⃗ ⋅ ▽ ) B ⃗ + A ⃗ × ( ▽ × B ⃗ ) ] f o r B ⃗ + [ ( B ⃗ ⋅ ▽ ) A ⃗ + B ⃗ × ( ▽ × A ⃗ ) ] f o r A ⃗ \therefore\triangledown(\vec{A}\cdot\vec{B})=[(\vec{A}\cdot\triangledown)\vec{B}+\vec{A}\times(\triangledown\times\vec{B})]for\vec{B}+[(\vec{B}\cdot\triangledown)\vec{A}+\vec{B}\times(\triangledown\times\vec{A})]for\vec{A} (A B )=[(A )B +A ×(×B )]forB +[(B )A +B ×(×A )]forA

    ∴ ▽ ( A ⃗ ⋅ B ⃗ ) = ( B ⃗ ⋅ ▽ ) A ⃗ + ( A ⃗ ⋅ ▽ ) B ⃗ + B ⃗ × ( ▽ × A ⃗ ) + A ⃗ × ( ▽ × B ⃗ ) \therefore\triangledown(\vec{A}\cdot\vec{B})=(\vec{B}\cdot\triangledown)\vec{A}+(\vec{A}\cdot\triangledown)\vec{B}+\vec{B}\times(\triangledown\times\vec{A})+\vec{A}\times(\triangledown\times\vec{B}) (A B )=(B )A +(A )B +B ×(×A )+A ×(×B )

    12. ▽ × ▽ φ = 0 \triangledown\times\triangledown\varphi=0 ×φ=0

    ∵ ▽ × ▽ φ = ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z ∂ u ∂ x ∂ u ∂ y ∂ u ∂ z ∣ = ( ∂ 2 u ∂ y ∂ z − ∂ 2 u ∂ y ∂ z ) e x ⃗ + ( ∂ 2 u ∂ x ∂ z − ∂ 2 u ∂ x ∂ z ) e y ⃗ + ( ∂ 2 u ∂ x ∂ y − ∂ 2 u ∂ x ∂ y ) e z ⃗ = 0 \begin{aligned} \because\triangledown\times\triangledown\varphi&= \begin{vmatrix} \vec{e_{x}}& \vec{e_{y}} & \vec{e_{z}} \\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial u}{\partial x}& \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \end{vmatrix}\\&= (\frac{\partial^2 u}{\partial y\partial z}-\frac{\partial^2 u}{\partial y\partial z})\vec{e_{x}}+ (\frac{\partial^2 u}{\partial x\partial z}-\frac{\partial^2 u}{\partial x\partial z})\vec{e_{y}}+ (\frac{\partial^2 u}{\partial x\partial y}-\frac{\partial^2 u}{\partial x\partial y})\vec{e_{z}}\\&=0 \end{aligned} ×φ=ex xxuey yyuez zzu=(yz2uyz2u)ex +(xz2uxz2u)ey +(xy2uxy2u)ez =0

    13. ▽ ⋅ ▽ × A ⃗ = 0 \triangledown\cdot\triangledown\times\vec{A}=0 ×A =0

    ∵ ▽ ⋅ ▽ × A ⃗ = ▽ ⋅ ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ = ▽ ⋅ [ ( ∂ A z ∂ y − ∂ A y ∂ z ) e x ⃗ − ( ∂ A x ∂ z − ∂ A z ∂ x ) e y ⃗ + ( ∂ A y ∂ x − ∂ A x ∂ y ) e z ⃗ ] \begin{aligned} \because\triangledown\cdot\triangledown\times\vec{A}&= \triangledown\cdot \begin{vmatrix} \vec{e_{x}}& \vec{e_{y}} & \vec{e_{z}} \\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x& A_y & A_z \end{vmatrix}\\&=\triangledown\cdot [(\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec{e_{x}}- (\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec{e_{y}}+ (\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec{e_{z}}] \end{aligned} ×A =ex xAxey yAyez zAz=[(yAzzAy)ex (zAxxAz)ey +(xAyyAx)ez ]

    ∴ ▽ ⋅ ▽ × A ⃗ = ∂ A z ∂ x ∂ y − ∂ A y ∂ x ∂ y + ∂ A x ∂ x ∂ z − ∂ A z ∂ y ∂ x + ∂ A y ∂ x ∂ z − ∂ A x ∂ y ∂ z = 0 \begin{aligned} \therefore\triangledown\cdot\triangledown\times\vec{A}= \frac{\partial A_z}{\partial x\partial y}- \frac{\partial A_y}{\partial x\partial y}+ \frac{\partial A_x}{\partial x\partial z}- \frac{\partial A_z}{\partial y\partial x}+ \frac{\partial A_y}{\partial x\partial z}- \frac{\partial A_x}{\partial y\partial z}=0 \end{aligned} ×A =xyAzxyAy+xzAxyxAz+xzAyyzAx=0

    同理,可用哑标计算

    14. ▽ × ▽ × A ⃗ = ▽ ( ▽ ⋅ A ⃗ ) − ▽ 2 A ⃗ \triangledown\times\triangledown\times\vec{A}=\triangledown(\triangledown\cdot\vec{A})-\triangledown^2\vec{A} ××A =(A )2A

    根据二重矢量积公式:

    ∴ ▽ × ▽ × A ⃗ = ▽ ( ▽ ⋅ A ⃗ ) − ( ▽ ⋅ ▽ ) A ⃗ = ▽ ( ▽ ⋅ A ⃗ ) − ▽ 2 A ⃗ \begin{aligned} \therefore\triangledown\times\triangledown\times\vec{A}&= \triangledown(\triangledown\cdot\vec{A})-(\triangledown\cdot\triangledown)\vec{A}\\&= \triangledown(\triangledown\cdot\vec{A})-\triangledown^2\vec{A} \end{aligned} ××A =(A )()A =(A )2A

    同理,可用哑标计算

    二、请计算 ▽ 2 1 r \triangledown^2\frac{1}{r} 2r1,其中 r = ∣ r ⃗ ∣ r=|\vec{r}| r=r

    ∵ r = ∣ r ⃗ ∣ = x 2 + y 2 + z 2 \because r=|\vec{r}|=\sqrt{x^2+y^2+z^2} r=r =x2+y2+z2

    ∴ ▽ 2 1 r = ∂ 2 ∂ x 2 1 x 2 + y 2 + z 2 + ∂ 2 ∂ y 2 1 x 2 + y 2 + z 2 + ∂ 2 ∂ z 2 1 x 2 + y 2 + z 2 = x + y + z ( x 2 + y 2 + z 2 ) − 3 / 2 \begin{aligned} \therefore\triangledown^2\frac{1}{r}&= \frac{\partial^2}{\partial x^2}\frac{1}{\sqrt{x^2+y^2+z^2}}+ \frac{\partial^2}{\partial y^2}\frac{1}{\sqrt{x^2+y^2+z^2}}+ \frac{\partial^2}{\partial z^2}\frac{1}{\sqrt{x^2+y^2+z^2}} \\&= \frac{x+y+z}{(x^2+y^2+z^2)^{-3/2}} \end{aligned} 2r1=x22x2+y2+z2 1+y22x2+y2+z2 1+z22x2+y2+z2 1=(x2+y2+z2)3/2x+y+z

    三、由Ampere(安培)定律 ∫ S J ⃗ ⋅ d σ ⃗ = ∫ ∂ S H ⃗ ⋅ d l ⃗ \int_{S}\vec{J}\cdot d\vec{\sigma}=\int_{\partial S}\vec{H}\cdot d\vec{l} SJ dσ =SH dl ,其中 J ⃗ \vec{J} J 为穿过空间曲面 S S S的电流密度向量, d σ ⃗ d\vec{\sigma} dσ 为S的有向面元,其法线正向由右手定则确定, H ⃗ \vec{H} H 为磁场强度向量, d l ⃗ d\vec{l} dl S S S的边界 ∂ S \partial S S的线元,其方向由右手定则确定,它与 d σ ⃗ d\vec{\sigma} dσ 的定向自洽。请证明: ▽ × H ⃗ = J ⃗ \triangledown\times \vec{H}=\vec{J} ×H =J (提示:应用Stokes公式)

    解:

    根据Ampere(安培)定律: ∫ S J ⃗ ⋅ d σ ⃗ = ∫ ∂ S H ⃗ ⋅ d l ⃗ \int_{S}\vec{J}\cdot d\vec{\sigma}=\int_{\partial S}\vec{H}\cdot d\vec{l} SJ dσ =SH dl

    两边取旋度得:

    ▽ × ( ∫ S J ⃗ ⋅ d σ ⃗ ) = ▽ × ( ∫ ∂ S H ⃗ ⋅ d l ⃗ ) \triangledown\times(\int_{S}\vec{J}\cdot d\vec{\sigma})= \triangledown\times(\int_{\partial S}\vec{H}\cdot d\vec{l}) ×(SJ dσ )=×(SH dl )

    ∫ S ( ▽ × J ⃗ ) ⋅ d σ ⃗ = ∫ ∂ S ( ▽ × H ⃗ ) ⋅ d l ⃗ \int_{S}(\triangledown\times\vec{J})\cdot d\vec{\sigma}= \int_{\partial S}(\triangledown\times\vec{H})\cdot d\vec{l} S(×J )dσ =S(×H )dl

    根据Stokes公式:

    ∫ S ▽ × J ⃗ ⋅ d σ ⃗ = ∫ ∂ S J ⃗ ⋅ d l ⃗ = ∫ ∂ S ▽ × H ⃗ ⋅ d l ⃗ \int_{S}\triangledown\times\vec{J}\cdot d\vec{\sigma}= \int_{\partial S}\vec{J}\cdot d\vec{l}= \int_{\partial S}\triangledown\times\vec{H}\cdot d\vec{l} S×J dσ =SJ dl =S×H dl

    ∴ ▽ × H ⃗ = J ⃗ \therefore\triangledown\times \vec{H}=\vec{J} ×H =J

    四、有一物理体系,它由三个向量场 E ⃗ , H ⃗ , A ⃗ \vec{E},\vec{H},\vec{A} E H A 和一个实标量场 V V V来描述,并且满足下面关系:

    [ 1 ] ▽ ⋅ E ⃗ = − μ 2 V [ 2 ] E ⃗ = ∂ A ⃗ ∂ t + ▽ V [ 3 ] H ⃗ = ▽ × A ⃗ [ 4 ] ▽ × H ⃗ = ∂ E ⃗ ∂ t − μ 2 A ⃗ \begin{aligned} [1]&&\triangledown\cdot\vec{E}&=-\mu^2V \\ [2]&&\vec{E}&=\frac{\partial\vec{A}}{\partial t}+\triangledown V \\ [3]&&\vec{H}&=\triangledown\times\vec{A} \\ [4]&&\triangledown\times\vec{H}&=\frac{\partial\vec{E}}{\partial t}-\mu^2\vec{A} \end{aligned} [1][2][3][4]E E H ×H =μ2V=tA +V=×A =tE μ2A

    其中, μ \mu μ为正的常数,求证:

    1、 ▽ ⋅ A ⃗ + ∂ V ∂ t = 0 \triangledown\cdot\vec{A}+\frac{\partial V}{\partial t}=0 A +tV=0

    2、 ▽ 2 V − μ 2 V + ∂ 2 V ∂ t 2 = 0 \triangledown^2V-\mu^2V+\frac{\partial^2V}{\partial t^2}=0 2Vμ2V+t22V=0

    3、当我们考虑在区域 Ω \Omega Ω中, V V V与时间无关,且在 Ω \Omega Ω的边界 ∂ Ω \partial\Omega Ω上有 V ∣ ∂ Ω = 0 V|_{\partial\Omega}=0 VΩ=0时,请证明:在 Ω \Omega Ω V = 0 V=0 V=0

    解:

    对式[4]取散度,得:

    ▽ ⋅ ( ▽ × H ⃗ ) = ∂ ( ▽ ⋅ E ⃗ ) ∂ t − μ 2 ( ▽ ⋅ A ⃗ ) = 0 \triangledown\cdot(\triangledown\times\vec{H})= \frac{\partial(\triangledown\cdot\vec{E})}{\partial t}-\mu^2(\triangledown\cdot\vec{A})=0 (×H )=t(E )μ2(A )=0

    根据式[1],得:

    ▽ ⋅ ( ▽ × H ⃗ ) = − μ 2 ∂ V ∂ t − μ 2 ( ▽ ⋅ A ⃗ ) = 0 \triangledown\cdot(\triangledown\times\vec{H})= -\mu^2\frac{\partial V}{\partial t}-\mu^2(\triangledown\cdot\vec{A})=0 (×H )=μ2tVμ2(A )=0

    所以得

    ▽ ⋅ A ⃗ + ∂ V ∂ t = 0 \triangledown\cdot\vec{A}+\frac{\partial V}{\partial t}=0 A +tV=0

    对式[2]取散度,得:

    ▽ ⋅ ( E ⃗ ) = ∂ ( ▽ ⋅ A ⃗ ) ∂ t − ▽ 2 V \triangledown\cdot(\vec{E})= \frac{\partial(\triangledown\cdot\vec{A})}{\partial t}-\triangledown^2V (E )=t(A )2V

    根据式[1],得:

    ∂ ( ▽ ⋅ A ⃗ ) ∂ t − ▽ 2 V = − μ 2 V \frac{\partial(\triangledown\cdot\vec{A})}{\partial t}-\triangledown^2V=-\mu^2V t(A )2V=μ2V

    所以得:

    − ∂ 2 V ∂ 2 t − ▽ 2 V = − μ 2 V -\frac{\partial^2 V}{\partial^2 t}-\triangledown^2V=-\mu^2V 2t2V2V=μ2V

    ▽ 2 V − μ 2 V + ∂ 2 V ∂ 2 t = 0 \triangledown^2V-\mu^2V+\frac{\partial^2 V}{\partial^2 t}=0 2Vμ2V+2t2V=0

    当我们考虑在区域 Ω \Omega Ω中, V V V与时间无关,且在 Ω \Omega Ω的边界 ∂ Ω \partial\Omega Ω上有 V ∣ ∂ Ω = 0 V|_{\partial\Omega}=0 VΩ=0

    ∵ V 与 时 间 无 关 \because V与时间无关 V

    ∴ ∂ V ∂ t = 0 \therefore\frac{\partial V}{\partial t}=0 tV=0

    ∴ ▽ ⋅ A ⃗ = 0 \therefore\triangledown\cdot\vec{A}=0 A =0

    即区域 Ω \Omega Ω是无源场

    又 ∵ V ∣ ∂ Ω = 0 又\because V|_{\partial\Omega}=0 VΩ=0

    ∴ 在 Ω 中 V = 0 \therefore在\Omega中V=0 ΩV=0

    第二章 R 3 R^3 R3空间曲线坐标系中的向量分析

    一、在柱坐标 r ⃗ ( ρ , φ , z ) \vec{r}(\rho,\varphi,z) r (ρ,φ,z)下,试计算其坐标基 e ⃗ ρ , e ⃗ φ , e ⃗ z \vec{e}_\rho,\vec{e}_\varphi,\vec{e}_z e ρ,e φ,e z(可称为空间中的标架场)的散度和旋度,即 ▽ ⋅ e ⃗ ρ , ▽ ⋅ e ⃗ φ , ▽ ⋅ e ⃗ z , ▽ × e ⃗ ρ , ▽ × e ⃗ φ , ▽ × e ⃗ z \triangledown\cdot\vec{e}_\rho,\triangledown\cdot\vec{e}_\varphi,\triangledown\cdot\vec{e}_z,\triangledown\times\vec{e}_\rho,\triangledown\times\vec{e}_\varphi,\triangledown\times\vec{e}_z e ρ,e φ,e z,×e ρ,×e φ,×e z

    在柱坐标系中:

    ▽ = e ⃗ ρ ∂ ∂ ρ + e ⃗ φ 1 ρ ∂ ∂ φ + e ⃗ z ∂ ∂ z \begin{aligned} \triangledown= \vec{e}_\rho\frac{\partial}{\partial\rho}+ \vec{e}_\varphi\frac{1}{\rho}\frac{\partial}{\partial\varphi}+ \vec{e}_z\frac{\partial}{\partial z} \end{aligned} =e ρρ+e φρ1φ+e zz

    则有:

    ▽ ⋅ e ⃗ ρ = ∂ ∂ ρ ▽ ⋅ e ⃗ φ = 1 ρ ∂ ∂ φ ▽ ⋅ e ⃗ z = ∂ ∂ z ▽ × e ⃗ ρ = e ⃗ φ ∂ ∂ z − e ⃗ z 1 ρ ∂ ∂ φ ▽ × e ⃗ φ = e ⃗ ρ ∂ ∂ z − e ⃗ z ∂ ∂ ρ ▽ × e ⃗ z = e ⃗ ρ 1 ρ ∂ ∂ φ − e ⃗ φ ∂ ∂ ρ \begin{aligned} \triangledown\cdot\vec{e}_\rho&=\frac{\partial}{\partial\rho}& \triangledown\cdot\vec{e}_\varphi&=\frac{1}{\rho}\frac{\partial}{\partial\varphi}& \triangledown\cdot\vec{e}_z&=\frac{\partial}{\partial z}\\ \triangledown\times\vec{e}_\rho&= \vec{e}_\varphi\frac{\partial}{\partial z}-\vec{e}_z\frac{1}{\rho}\frac{\partial}{\partial\varphi}& \triangledown\times\vec{e}_\varphi&= \vec{e}_\rho\frac{\partial}{\partial z}-\vec{e}_z\frac{\partial}{\partial\rho}& \triangledown\times\vec{e}_z&= \vec{e}_\rho\frac{1}{\rho}\frac{\partial}{\partial\varphi}-\vec{e}_\varphi\frac{\partial}{\partial\rho}\\ \end{aligned} e ρ×e ρ=ρ=e φze zρ1φe φ×e φ=ρ1φ=e ρze zρe z×e z=z=e ρρ1φe φρ

    二、若有一个力场在直角坐标系下的表达式为

    F ⃗ = − y x 2 + y 2 e ⃗ x + x x 2 + y 2 e ⃗ x \vec{F}=-\frac{y}{x^2+y^2}\vec{e}_x+\frac{x}{x^2+y^2}\vec{e}_x F =x2+y2ye x+x2+y2xe x

    1、请用柱坐标系把此力场表示出来; 2、请在柱坐标系下计算次力场的散度和旋度; 3、若有一物体在此力场中沿 e ⃗ ρ \vec{e}_\rho e ρ方向运动一单位长度时,求此力场 F ⃗ \vec{F} F 所做的功; 4、若有一物体在此力场的作用下,沿 x − y x-y xy平面的以单位圆顺时针运动一圈,求此力场 F ⃗ \vec{F} F 所做的功。并分析此功与力场 F ⃗ \vec{F} F 的旋度的关系

    解:

    ∵ { x = ρ c o s φ y = ρ s i n φ z = z \because \left\{\begin{matrix} x&= &\rho cos\varphi \\ y&= &\rho sin\varphi \\ z&= &z \end{matrix}\right. xyz===ρcosφρsinφz

    ∴ { e ⃗ x = e ⃗ ρ c o s φ − e ⃗ φ s i n φ e ⃗ y = e ⃗ ρ s i n φ + e ⃗ φ c o s φ e ⃗ z = e ⃗ z \therefore \left\{\begin{matrix} \vec{e}_x&= &\vec{e}_\rho cos\varphi-\vec{e}_\varphi sin\varphi \\ \vec{e}_y&= &\vec{e}_\rho sin\varphi+\vec{e}_\varphi cos\varphi \\ \vec{e}_z&= &\vec{e}_z \end{matrix}\right. e xe ye z===e ρcosφe φsinφe ρsinφ+e φcosφe z

    ∴ F ⃗ = − ρ s i n φ ρ 2 ( e ⃗ ρ c o s φ − e ⃗ φ s i n φ ) + ρ c o s φ ρ 2 ( e ⃗ ρ s i n φ + e ⃗ φ c o s φ ) = 1 ρ e ⃗ φ \begin{aligned} \therefore\vec{F}&= -\frac{\rho sin\varphi}{\rho^2}(\vec{e}_\rho cos\varphi-\vec{e}_\varphi sin\varphi)+ \frac{\rho cos\varphi}{\rho^2}(\vec{e}_\rho sin\varphi+\vec{e}_\varphi cos\varphi)\\&= \frac{1}{\rho}\vec{e}_\varphi \end{aligned} F =ρ2ρsinφ(e ρcosφe φsinφ)+ρ2ρcosφ(e ρsinφ+e φcosφ)=ρ1e φ

    ∴ ▽ ⋅ F ⃗ = 0 \begin{aligned} \therefore\triangledown\cdot\vec{F}&=0 \end{aligned} F =0

    ∴ ▽ × F ⃗ = 0 \begin{aligned} \therefore\triangledown\times\vec{F}&=0 \end{aligned} ×F =0

    若有一物体在此力场中沿 e ⃗ ρ \vec{e}_\rho e ρ方向运动一单位长度时,此力场 F ⃗ \vec{F} F 所做的功为0

    若有一物体在此力场的作用下,沿 x − y x-y xy平面的以单位圆顺时针运动一圈,此力场 F ⃗ \vec{F} F 所做的功为 1 ρ \frac{1}{\rho} ρ1

    此功与力场 F ⃗ \vec{F} F 的旋度相等

    第四章 复变函数的概念

    一、写出下列复数的实部、虚部、模和幅角

    二、写出下列复变函数 W = f ( z ) = u ( x , y ) + i v ( x , y ) W=f(z)=u(x,y)+iv(x,y) W=f(z)=u(x,y)+iv(x,y)的实部 u ( x , y ) u(x,y) u(x,y)、虚部 v ( x , y ) v(x,y) v(x,y)、模 ∣ f ( z ) ∣ |f(z)| f(z)和幅角 a r g f ( z ) argf(z) argf(z)

    三、求下列方程的解,并把解在复平面上用图形表示出来,说明他们的几何意义

    四、对于在实变量 x x x中成立的关系式 s i n ( x 1 + x 2 ) = s i n x 1 c o s x 2 + s i n s x 2 c o s x 1 sin(x_1+x_2)=sinx_1cosx_2+sinsx_2cosx_1 sin(x1+x2)=sinx1cosx2+sinsx2cosx1请证明这一关系式在复变量 z z z的情况下也成立 s i n ( z 1 + z 2 ) = s i n z 1 c o s z 2 + s i n s z 2 c o s z 1 sin(z_1+z_2)=sinz_1cosz_2+sinsz_2cosz_1 sin(z1+z2)=sinz1cosz2+sinsz2cosz1

    解:

    s i n ( z 1 + z 2 ) = s i n ( x 1 + i y 1 + x 2 + i y 2 ) = s i n [ ( x 1 + x 2 ) + i ( y 1 + y 2 ) ] = s i n ( x 1 + x 2 ) c o s ( i ( y 1 + y 2 ) ) + s i n ( i ( y 1 + y 2 ) ) c o s ( x 1 + x 2 ) = ( s i n x 1 c o s x 2 + s i n x 2 c o s x 1 ) ( c o s i y 1 c o s i y 2 − s i n i y 1 s i n i y 2 ) + ( s i n i y 1 c o s i y 2 + s i n i y 2 c o s i y 1 ) ( c o s x 1 c o s x 2 − s i n x 1 s i n x 2 ) = s i n x 1 c o s x 2 c o s i y 1 c o s i y 2 + s i n x 2 c o s x 1 c o s i y 1 c o s i y 2 − s i n x 1 c o s x 2 s i n i y 1 s i n i y 2 − s i n x 2 c o s x 1 s i n i y 1 s i n i y 2 + c o s x 1 c o s x 2 s i n i y 1 c o s i y 2 + c o s x 1 c o s x 2 s i n i y 2 c o s i y 1 − s i n x 1 s i n x 2 s i n i y 1 c o s i y 2 − s i n x 1 s i n x 2 s i n i y 2 c o s i y 1 = s i n x 1 c o s x 2 c o s i y 1 c o s i y 2 + c o s x 1 c o s x 2 s i n i y 1 c o s i y 2 − s i n x 1 s i n x 2 s i n i y 2 c o s i y 1 − s i n x 2 c o s x 1 s i n i y 1 s i n i y 2 + s i n x 2 c o s x 1 c o s i y 1 c o s i y 2 + c o s x 1 c o s x 2 s i n i y 2 c o s i y 1 − s i n x 1 s i n x 2 s i n i y 1 c o s i y 2 − s i n x 2 c o s x 1 s i n i y 1 s i n i y 2 = s i n ( x 1 + i y 1 ) c o s ( x 2 + i y 2 ) + s i n ( x 2 + i y 2 ) c o s ( x 1 + i y 1 ) = s i n z 1 c o s z 2 + s i n s z 2 c o s z 1 \begin{aligned} sin(z_1+z_2)&=sin(x_1+iy_1+x_2+iy_2)\\&= sin[(x_1+x_2)+i(y_1+y_2)]\\&= sin(x_1+x_2)cos(i(y_1+y_2))+sin(i(y_1+y_2))cos(x_1+x_2)\\&= (sinx_1cosx_2+sinx_2cosx_1)(cosiy_1cosiy_2-siniy_1siniy_2)\\&+ (siniy_1cosiy_2+siniy_2cosiy_1)(cosx_1cosx_2-sinx_1sinx_2)\\&= sinx_1cosx_2cosiy_1cosiy_2+sinx_2cosx_1cosiy_1cosiy_2\\&- sinx_1cosx_2siniy_1siniy_2-sinx_2cosx_1siniy_1siniy_2\\&+ cosx_1cosx_2siniy_1cosiy_2+cosx_1cosx_2siniy_2cosiy_1\\&- sinx_1sinx_2siniy_1cosiy_2-sinx_1sinx_2siniy_2cosiy_1\\&= sinx_1cosx_2cosiy_1cosiy_2+cosx_1cosx_2siniy_1cosiy_2\\&- sinx_1sinx_2siniy_2cosiy_1-sinx_2cosx_1siniy_1siniy_2\\&+ sinx_2cosx_1cosiy_1cosiy_2+cosx_1cosx_2siniy_2cosiy_1\\&- sinx_1sinx_2siniy_1cosiy_2-sinx_2cosx_1siniy_1siniy_2\\&= sin(x_1+iy_1)cos(x_2+iy_2)+sin(x_2+iy_2)cos(x_1+iy_1)\\&= sinz_1cosz_2+sinsz_2cosz_1 \end{aligned} sin(z1+z2)=sin(x1+iy1+x2+iy2)=sin[(x1+x2)+i(y1+y2)]=sin(x1+x2)cos(i(y1+y2))+sin(i(y1+y2))cos(x1+x2)=(sinx1cosx2+sinx2cosx1)(cosiy1cosiy2siniy1siniy2)+(siniy1cosiy2+siniy2cosiy1)(cosx1cosx2sinx1sinx2)=sinx1cosx2cosiy1cosiy2+sinx2cosx1cosiy1cosiy2sinx1cosx2siniy1siniy2sinx2cosx1siniy1siniy2+cosx1cosx2siniy1cosiy2+cosx1cosx2siniy2cosiy1sinx1sinx2siniy1cosiy2sinx1sinx2siniy2cosiy1=sinx1cosx2cosiy1cosiy2+cosx1cosx2siniy1cosiy2sinx1sinx2siniy2cosiy1sinx2cosx1siniy1siniy2+sinx2cosx1cosiy1cosiy2+cosx1cosx2siniy2cosiy1sinx1sinx2siniy1cosiy2sinx2cosx1siniy1siniy2=sin(x1+iy1)cos(x2+iy2)+sin(x2+iy2)cos(x1+iy1)=sinz1cosz2+sinsz2cosz1

    Processed: 0.030, SQL: 9