1. tensorflow实现简单的线性回归案例
1.1 线性回归知识复习
1.2 相关API
import tensorflow
as tf
import os
os
.environ
['TF_CPP_MIN_LOG_LEVEL']='2'
def myregression():
"""
自实现一个线性回归预测
:return: None
"""
x
= tf
.random_normal
([100, 1], mean
=1.75, stddev
=0.5, name
="x_data")
y_true
= tf
.matmul
(x
, [[0.7]]) + 0.8
weight
= tf
.Variable
(tf
.random_normal
([1, 1], mean
=0.0, stddev
=1.0), name
="w")
bias
= tf
.Variable
(0.0, name
="b")
y_predict
= tf
.matmul
(x
, weight
) + bias
loss
= tf
.reduce_mean
(tf
.square
(y_true
- y_predict
))
train_op
= tf
.train
.GradientDescentOptimizer
(0.1).minimize
(loss
)
init_op
= tf
.global_variables_initializer
()
with tf
.Session
() as sess
:
sess
.run
(init_op
)
print("随机初始化的参数权重为:%f, 偏置为:%f" % (weight
.eval(), bias
.eval()))
for i
in range(100):
sess
.run
(train_op
)
print("第%d次优化的参数权重为:%f, 偏置为:%f" % (i
, weight
.eval(), bias
.eval()))
return None
if __name__
== "__main__":
myregression
()
输出的结果为:
转载请注明原文地址:https://blackberry.8miu.com/read-43763.html