详细见代码注释
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
np.random.seed(0)
iris = datasets.load_iris()
print(iris)
iris_x = iris.data
iris_y = iris.target
randomarr = np.random.permutation(len(iris_x))
iris_x_train = iris_x[randomarr[:-10]]
iris_y_train = iris_y[randomarr[:-10]]
iris_x_test = iris_x[randomarr[-10:]]
iris_y_test = iris_y[randomarr[-10:]]
knn = KNeighborsClassifier()
knn.fit(iris_x_train,iris_y_train)
iris_y_predict = knn.predict(iris_x_test)
probility = knn.predict_proba(iris_x_test)
neighbirpoint = knn.kneighbors([iris_x_test[-1]],5)
score = knn.score(iris_x_test,iris_y_test,sample_weight=None)
print('iris_y_predict=')
print(iris_y_predict)
print('iris_y_test')
print(iris_y_test)
print('准确率:{:.2%}'.format(score))
转载请注明原文地址:https://blackberry.8miu.com/read-4381.html