为什么要有图
前面我们学了线性表和树线性表局限于一个直接前驱和一个直接后继的关系树也只能有一个直接前驱也就是父节点当我们需要表示多对多的关系时, 这里我们就用到了图
图的举例说明
图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。如图:
图的常用概念
顶点(vertex)边(edge)路径无向图有向图带权图
图的表示方式
图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。
邻接矩阵 邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点。 邻接表
邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
图的快速入门案例
要求: 代码实现如下图结构.
思路分析 (1) 存储顶点String 使用 ArrayList (2) 保存矩阵 int[][] edges
代码实现
public void insertVertex(String vertex
) {
vertexList
.add(vertex
);
}
public void insertEdge(int v1
, int v2
, int weight
) {
edges
[v1
][v2
] = weight
;
edges
[v2
][v1
] = weight
;
numOfEdges
++;
}
图的深度优先遍历介绍
图遍历介绍
所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:
深度优先遍历广度优先遍历
深度优先遍历基本思想
图的深度优先搜索(Depth First Search) 。
深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。显然,深度优先搜索是一个递归的过程
深度优先遍历算法步骤
访问初始结点v,并标记结点v为已访问。查找结点v的第一个邻接结点w。若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。找结点v的w邻接结点的下一个邻接结点,转到步骤3。
看一个具体案例分析:
要求:对下图进行深度优先搜索, 从A 开始遍历.
思路分析
代码实现
private void dfs(boolean[] isVisited
, int i
) {
System
.out
.print(getValueByIndex(i
) + "->");
isVisited
[i
] = true;
int w
= getFirstNeighbor(i
);
while (w
!= -1) {
if (!isVisited
[w
]) {
dfs(isVisited
, w
);
}
w
= getNextNeighbor(i
, w
);
}
}
public void dfs() {
isVisited
= new boolean[vertexList
.size()];
for (int i
= 0; i
< getNumOfVertex(); i
++) {
if (!isVisited
[i
]) {
dfs(isVisited
, i
);
}
}
}
广度优先遍历基本思想
图的广度优先搜索(Broad First Search) 。 类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点
广度优先遍历算法步骤
访问初始结点v并标记结点v为已访问。结点v入队列当队列非空时,继续执行,否则算法结束。出队列,取得队头结点u。查找结点u的第一个邻接结点w。若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤: 6.1 若结点w尚未被访问,则访问结点w并标记为已访问。 6.2 结点w入队列 6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
广度优先举例说明
广度优先代码实现
private void bfs(boolean[] isVisited
, int i
) {
int u
;
int w
;
LinkedList
<Integer> queue
= new LinkedList<>();
System
.out
.print(getValueByIndex(i
) + "=>");
isVisited
[i
] = true;
queue
.addLast(i
);
while (!queue
.isEmpty()) {
u
= queue
.removeFirst();
w
= getFirstNeighbor(u
);
while (w
!= -1) {
if (!isVisited
[w
]) {
System
.out
.print(getValueByIndex(w
) + "=>");
isVisited
[w
] = true;
queue
.addFirst(w
);
}
w
= getNextNeighbor(u
, w
);
}
}
}
public void bfs() {
isVisited
= new boolean[vertexList
.size()];
for (int i
= 0; i
< getNumOfVertex(); i
++) {
if (!isVisited
[i
]) {
bfs(isVisited
, i
);
}
}
}
应用实例
图的完整代码
package graph
;
import java
.util
.ArrayList
;
import java
.util
.Arrays
;
import java
.util
.LinkedList
;
public class Graph {
private ArrayList
<String> vertexList
;
private int[][] edges
;
private int numOfEdges
;
private boolean[] isVisited
;
public static void main(String
[] args
) {
int n
= 5;
String
[] Vertexes
= {"1", "2", "3", "4", "5", "6", "7", "8"};
Graph graph
= new Graph(8);
for (String Vertex
: Vertexes
) {
graph
.insertVertex(Vertex
);
}
graph
.insertEdge(0, 1, 1);
graph
.insertEdge(0, 2, 1);
graph
.insertEdge(1, 3, 1);
graph
.insertEdge(1, 4, 1);
graph
.insertEdge(3, 7, 1);
graph
.insertEdge(4, 7, 1);
graph
.insertEdge(2, 5, 1);
graph
.insertEdge(2, 6, 1);
graph
.insertEdge(5, 6, 1);
graph
.showGraph();
System
.out
.println("深度优先遍历");
graph
.dfs();
System
.out
.println();
System
.out
.println("广度优先遍历");
graph
.bfs();
}
public Graph(int n
) {
edges
= new int[n
][n
];
vertexList
= new ArrayList<String>(n
);
numOfEdges
= 0;
}
public void insertVertex(String vertex
) {
vertexList
.add(vertex
);
}
public void insertEdge(int v1
, int v2
, int weight
) {
edges
[v1
][v2
] = weight
;
edges
[v2
][v1
] = weight
;
numOfEdges
++;
}
public int getFirstNeighbor(int index
) {
for (int i
= 0; i
< vertexList
.size(); i
++) {
if (edges
[index
][i
] > 0) {
return i
;
}
}
return -1;
}
public int getNextNeighbor(int v1
, int v2
) {
for (int i
= v2
+ 1; i
< vertexList
.size(); i
++) {
if (edges
[v1
][i
] > 0) {
return i
;
}
}
return -1;
}
private void bfs(boolean[] isVisited
, int i
) {
int u
;
int w
;
LinkedList
<Integer> queue
= new LinkedList<>();
System
.out
.print(getValueByIndex(i
) + "=>");
isVisited
[i
] = true;
queue
.addLast(i
);
while (!queue
.isEmpty()) {
u
= queue
.removeFirst();
w
= getFirstNeighbor(u
);
while (w
!= -1) {
if (!isVisited
[w
]) {
System
.out
.print(getValueByIndex(w
) + "=>");
isVisited
[w
] = true;
queue
.addFirst(w
);
}
w
= getNextNeighbor(u
, w
);
}
}
}
public void bfs() {
isVisited
= new boolean[vertexList
.size()];
for (int i
= 0; i
< getNumOfVertex(); i
++) {
if (!isVisited
[i
]) {
bfs(isVisited
, i
);
}
}
}
private void dfs(boolean[] isVisited
, int i
) {
System
.out
.print(getValueByIndex(i
) + "->");
isVisited
[i
] = true;
int w
= getFirstNeighbor(i
);
while (w
!= -1) {
if (!isVisited
[w
]) {
dfs(isVisited
, w
);
}
w
= getNextNeighbor(i
, w
);
}
}
public void dfs() {
isVisited
= new boolean[vertexList
.size()];
for (int i
= 0; i
< getNumOfVertex(); i
++) {
if (!isVisited
[i
]) {
dfs(isVisited
, i
);
}
}
}
public int getNumOfVertex() {
return vertexList
.size();
}
public int getNumOfEdges() {
return numOfEdges
;
}
public String
getValueByIndex(int i
) {
return vertexList
.get(i
);
}
public int getWeight(int v1
, int v2
) {
return edges
[v1
][v2
];
}
public void showGraph() {
for (int[] link
: edges
) {
System
.out
.println(Arrays
.toString(link
));
}
}
}