树结构基础部分
二叉树
为什么需要树这种数据结构
数组存储方式的分析 ① 优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。 ② 缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低。
链式存储方式的分析 ① 优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。 ② 缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历) 。
树存储方式的分析 ① 能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。 案例:[7,3,10,1,5,9,12]
树的示意图
二叉树的概念
树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。二叉树的子节点分为左节点和右节点。如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。
二叉树遍历说明使用前序,中序和后序对下面的二叉树进行遍历.
二叉树遍历应用实例(前序、中序、后序)
应用实例的思路和说明
代码
package tree
;
public class BinaryTreeDemo {
public static void main(String
[] args
) {
BinaryTree binaryTree
= new BinaryTree();
HeroNode root
= new HeroNode(1,"宋江");
HeroNode node2
= new HeroNode(2,"吴用");
HeroNode node3
= new HeroNode(3,"卢俊义");
HeroNode node4
= new HeroNode(4,"林冲");
HeroNode node5
= new HeroNode(5,"关胜");
root
.setLeft(node2
);
root
.setRight(node3
);
node3
.setRight(node4
);
binaryTree
.setRoot(root
);
System
.out
.println("前序遍历测试");
binaryTree
.preOrder();
System
.out
.println("中序遍历测试");
binaryTree
.infixOrder();
System
.out
.println("后序遍历测试");
binaryTree
.postOrder();
node3
.setLeft(node5
);
System
.out
.println("前序遍历测试");
binaryTree
.preOrder();
System
.out
.println("中序遍历测试");
binaryTree
.infixOrder();
System
.out
.println("后序遍历测试");
binaryTree
.postOrder();
}
}
class BinaryTree{
private HeroNode root
;
public void setRoot(HeroNode root
) {
this.root
= root
;
}
public void preOrder(){
if(this.root
!= null
){
this.root
.preOrder();
}else{
System
.out
.println("二叉树为空,无法遍历!");
}
}
public void infixOrder(){
if(this.root
!= null
){
this.root
.infixOrder();
}else{
System
.out
.println("二叉树为空,无法遍历!");
}
}
public void postOrder(){
if(this.root
!= null
){
this.root
.postOrder();
}else{
System
.out
.println("二叉树为空,无法遍历!");
}
}
}
class HeroNode {
private int no
;
private String name
;
private HeroNode left
;
private HeroNode right
;
public HeroNode(int no
, String name
) {
super();
this.no
= no
;
this.name
= name
;
}
public int getNo() {
return no
;
}
public String
getName() {
return name
;
}
public HeroNode
getLeft() {
return left
;
}
public HeroNode
getRight() {
return right
;
}
public void setNo(int no
) {
this.no
= no
;
}
public void setName(String name
) {
this.name
= name
;
}
public void setLeft(HeroNode left
) {
this.left
= left
;
}
public void setRight(HeroNode right
) {
this.right
= right
;
}
@Override
public String
toString() {
return "HeroNode{" +
"no=" + no
+
", name='" + name
+ '\'' +
'}';
}
public void preOrder() {
System
.out
.println(this.toString());
if (this.left
!= null
) {
this.left
.preOrder();
}
if (this.right
!= null
) {
this.right
.preOrder();
}
}
public void infixOrder() {
if (this.left
!= null
) {
this.left
.infixOrder();
}
System
.out
.println(this.toString());
if (this.right
!= null
) {
this.right
.infixOrder();
}
}
public void postOrder() {
if (this.left
!= null
) {
this.left
.postOrder();
}
if (this.right
!= null
) {
this.right
.postOrder();
}
System
.out
.println(this.toString());
}
}
二叉树-查找指定节点
要求
请编写前序查找,中序查找和后序查找的方法。并分别使用三种查找方式,查找 heroNO = 5 的节点并分析各种查找方式,分别比较了多少次思路图解分析
代码
package tree
;
public class BinaryTreeDemo {
public static void main(String
[] args
) {
BinaryTree binaryTree
= new BinaryTree();
HeroNode root
= new HeroNode(1,"宋江");
HeroNode node2
= new HeroNode(2,"吴用");
HeroNode node3
= new HeroNode(3,"卢俊义");
HeroNode node4
= new HeroNode(4,"林冲");
HeroNode node5
= new HeroNode(5,"关胜");
root
.setLeft(node2
);
root
.setRight(node3
);
node3
.setRight(node4
);
binaryTree
.setRoot(root
);
node3
.setLeft(node5
);
System
.out
.println("前序遍历查询");
HeroNode preResultNode
= binaryTree
.preOrderSearch(5);
if(preResultNode
!= null
){
System
.out
.printf("找到了,信息为 : no = %d name = %s\n",preResultNode
.getNo(),preResultNode
.getName());
}else{
System
.out
.printf("没有找到编号为 %d 的英雄",5);
}
System
.out
.println("中序遍历查询");
HeroNode infixResultNode
= binaryTree
.infixOrderSearch(5);
if(preResultNode
!= null
){
System
.out
.printf("找到了,信息为 : no = %d name = %s\n",preResultNode
.getNo(),preResultNode
.getName());
}else{
System
.out
.printf("没有找到编号为 %d 的英雄",5);
}
System
.out
.println("后序遍历查询");
HeroNode postResultNode
= binaryTree
.postOrderSearch(5);
if(preResultNode
!= null
){
System
.out
.printf("找到了,信息为 : no = %d name = %s\n",preResultNode
.getNo(),preResultNode
.getName());
}else{
System
.out
.printf("没有找到编号为 %d 的英雄",5);
}
}
}
class BinaryTree{
private HeroNode root
;
public void setRoot(HeroNode root
) {
this.root
= root
;
}
public HeroNode
preOrderSearch(int no
){
if(root
!= null
){
return root
.preOrderSearch(no
);
}else{
return null
;
}
}
public HeroNode
infixOrderSearch(int no
){
if(root
!= null
){
return root
.infixOrderSearch(no
);
}else{
return null
;
}
}
public HeroNode
postOrderSearch(int no
){
if(root
!= null
){
return root
.postOrderSearch(no
);
}else{
return null
;
}
}
}
class HeroNode {
private int no
;
private String name
;
private HeroNode left
;
private HeroNode right
;
public HeroNode(int no
, String name
) {
super();
this.no
= no
;
this.name
= name
;
}
public int getNo() {
return no
;
}
public String
getName() {
return name
;
}
public HeroNode
getLeft() {
return left
;
}
public HeroNode
getRight() {
return right
;
}
public void setNo(int no
) {
this.no
= no
;
}
public void setName(String name
) {
this.name
= name
;
}
public void setLeft(HeroNode left
) {
this.left
= left
;
}
public void setRight(HeroNode right
) {
this.right
= right
;
}
@Override
public String
toString() {
return "HeroNode{" +
"no=" + no
+
", name='" + name
+ '\'' +
'}';
}
public HeroNode
preOrderSearch(int no
){
if(this.no
== no
){
return this;
}
HeroNode resultNode
= null
;
if(this.left
!= null
){
resultNode
= this.left
.preOrderSearch(no
);
}
if(resultNode
!= null
){
return resultNode
;
}
if(this.right
!= null
){
resultNode
= this.right
.preOrderSearch(no
);
}
return resultNode
;
}
public HeroNode
infixOrderSearch(int no
){
HeroNode resultNode
= null
;
if(this.left
!= null
){
resultNode
= this.left
.infixOrderSearch(no
);
}
if(resultNode
!= null
){
return resultNode
;
}
if(this.no
== no
){
return this;
}
if(this.right
!= null
){
resultNode
= this.right
.infixOrderSearch(no
);
}
return resultNode
;
}
public HeroNode
postOrderSearch(int no
){
HeroNode resultNode
= null
;
if(this.left
!= null
){
resultNode
= this.left
.postOrderSearch(no
);
}
if(resultNode
!= null
){
return resultNode
;
}
if(this.right
!= null
){
resultNode
= this.right
.postOrderSearch(no
);
}
if(resultNode
!= null
){
return resultNode
;
}
if(this.no
== no
){
resultNode
= this;
}
return resultNode
;
}
}
二叉树-删除节点
要求
如果删除的节点是叶子节点,则删除该节点如果删除的节点是非叶子节点,则删除该子树.测试,删除掉 5号叶子节点 和 3号子树.思路分析图解
代码
package tree
;
public class BinaryTreeDemo {
public static void main(String
[] args
) {
BinaryTree binaryTree
= new BinaryTree();
HeroNode root
= new HeroNode(1, "宋江");
HeroNode node2
= new HeroNode(2, "吴用");
HeroNode node3
= new HeroNode(3, "卢俊义");
HeroNode node4
= new HeroNode(4, "林冲");
HeroNode node5
= new HeroNode(5, "关胜");
root
.setLeft(node2
);
root
.setRight(node3
);
node3
.setRight(node4
);
binaryTree
.setRoot(root
);
node3
.setLeft(node5
);
System
.out
.println("删除前,前序遍历");
binaryTree
.preOrder();
binaryTree
.delNode(3);
System
.out
.println("删除后,前序遍历");
binaryTree
.preOrder();
}
}
class BinaryTree {
private HeroNode root
;
public void setRoot(HeroNode root
) {
this.root
= root
;
}
public void delNode(int no
) {
if (root
!= null
) {
if (root
.getNo() == no
) {
root
= null
;
} else {
root
.delNode(no
);
}
} else {
System
.out
.println("空树,无法删除");
}
}
}
class HeroNode {
private int no
;
private String name
;
private HeroNode left
;
private HeroNode right
;
public HeroNode(int no
, String name
) {
super();
this.no
= no
;
this.name
= name
;
}
public int getNo() {
return no
;
}
public String
getName() {
return name
;
}
public HeroNode
getLeft() {
return left
;
}
public HeroNode
getRight() {
return right
;
}
public void setNo(int no
) {
this.no
= no
;
}
public void setName(String name
) {
this.name
= name
;
}
public void setLeft(HeroNode left
) {
this.left
= left
;
}
public void setRight(HeroNode right
) {
this.right
= right
;
}
@Override
public String
toString() {
return "HeroNode{" +
"no=" + no
+
", name='" + name
+ '\'' +
'}';
}
public void delNode(int no
) {
if (this.left
!= null
&& this.left
.no
== no
) {
this.left
= null
;
return;
}
if (this.right
!= null
&& this.right
.no
== no
) {
this.right
= null
;
return;
}
if (this.left
!= null
) {
this.left
.delNode(no
);
}
if (this.right
!= null
) {
this.right
.delNode(no
);
}
}
}
顺序存储二叉树
顺序存储二叉树的概念
基本说明 从数据存储来看,数组存储方式和树的存储方式可以相互转换,即数组可以转换成树,树也可以转换成数组,可看示意图。 要求: 图中的二叉树的结点,要求以数组的方式来存放 arr : [1, 2, 3, 4, 5, 6, 7] 要求在遍历数组 arr时,仍然可以以前序遍历,中序遍历和后序遍历的方式完成结点的遍历顺序存储二叉树的特点:
顺序二叉树通常只考虑完全二叉树第n个元素的左子节点为 2 * n + 1第n个元素的右子节点为 2 * n + 2第n个元素的父节点为 (n-1) / 2n : 表示二叉树中的第几个元素(按0开始编号如图所示)
顺序存储二叉树遍历
需求: 给你一个数组 {1,2,3,4,5,6,7},要求以二叉树前序遍历的方式进行遍历。 前序遍历的结果应当为 1,2,4,5,3,6,7 课后练习:完成对数组以二叉树中序,后序遍历方式的代码.
代码
package tree
;
import java
.util
.ArrayList
;
public class ArrBinaryTreeDemo {
public static void main(String
[] args
) {
int[] arr
= {1, 2, 3, 4, 5, 6, 7};
ArrayBinaryTree arrayBinaryTree
= new ArrayBinaryTree(arr
);
arrayBinaryTree
.preOrder();
}
}
class ArrayBinaryTree {
private int[] arr
;
public ArrayBinaryTree(int[] arr
) {
this.arr
= arr
;
}
public void preOrder(){
this.preOrder(0);
}
public void infixOrder(){
this.infixOrder(0);
}
public void postOrder(){
this.postOrder(0);
}
public void preOrder(int index
) {
if (arr
== null
|| arr
.length
== 0) {
System
.out
.println("数组为空,不能按照二叉树的前序遍历");
}
System
.out
.println(arr
[index
]);
if ((index
) * 2 + 1 < arr
.length
) {
preOrder(2 * index
+ 1);
}
if ((index
) * 2 + 2 < arr
.length
) {
preOrder(2 * index
+ 2);
}
}
public void infixOrder(int index
) {
if (arr
== null
|| arr
.length
== 0) {
System
.out
.println("数组为空,不能按照二叉树的中序遍历");
}
if ((index
) * 2 + 1 < arr
.length
) {
infixOrder(2 * index
+ 1);
}
System
.out
.println(arr
[index
]);
if ((index
) * 2 + 2 < arr
.length
) {
infixOrder(2 * index
+ 2);
}
}
public void postOrder(int index
) {
if (arr
== null
|| arr
.length
== 0) {
System
.out
.println("数组为空,不能按照二叉树的后序遍历");
}
if ((index
) * 2 + 1 < arr
.length
) {
postOrder(2 * index
+ 1);
}
System
.out
.println(arr
[index
]);
if ((index
) * 2 + 2 < arr
.length
) {
postOrder(2 * index
+ 2);
}
}
}
顺序存储二叉树应用实例
八大排序算法中的堆排序,就会使用到顺序存储二叉树。
线索化二叉树
一个问题
将数列 {1, 3, 6, 8, 10, 14 } 构建成一颗二叉树. n+1=7 问题分析:
当我们对上面的二叉树进行中序遍历时,数列为 {8, 3, 10, 1, 6, 14 }但是 6, 8, 10, 14 这几个节点的 左右指针,并没有完全的利用上.如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点,怎么办?解决方案-线索二叉树
线索二叉树基本介绍
n个结点的二叉链表中含有n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种一个结点的前一个结点,称为前驱结点一个结点的后一个结点,称为后继结点
应用案例说明:将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 {8, 3, 10, 1, 14, 6}
思路分析:
遍历线索化二叉树
说明:对前面的中序线索化的二叉树, 进行遍历分析:因为线索化后,各个结点指向有变化,因此原来的遍历方式不能使用,这时需要使用新的方式遍历线索化二叉树,各个节点可以通过线型方式遍历,因此无需使用递归方式,这样也提高了遍历的效率。 遍历的次序应当和中序遍历保持一致。
代码
package tree
.threadedbinarytree
;
public class ThreadedBinaryTreeDemo {
public static void main(String
[] args
) {
HeroNode root
= new HeroNode(1, "tom");
HeroNode node2
= new HeroNode(3, "jack");
HeroNode node3
= new HeroNode(6, "smith");
HeroNode node4
= new HeroNode(8, "mary");
HeroNode node5
= new HeroNode(10, "king");
HeroNode node6
= new HeroNode(14, "dim");
root
.setLeft(node2
);
root
.setRight(node3
);
node2
.setLeft(node4
);
node2
.setRight(node5
);
node3
.setLeft(node6
);
ThreadedBinaryTree threadedBinaryTree
= new ThreadedBinaryTree();
threadedBinaryTree
.setRoot(root
);
threadedBinaryTree
.infixThreadedNodes();
System
.out
.println("使用线索化的方式遍历线索化二叉树");
threadedBinaryTree
.threadedList();
}
}
class ThreadedBinaryTree {
private tree
.threadedbinarytree
.HeroNode root
;
private HeroNode pre
= null
;
public void setRoot(tree
.threadedbinarytree
.HeroNode root
) {
this.root
= root
;
}
public void threadedList() {
HeroNode node
= root
;
while (node
!= null
) {
while (node
.getLeftType() == 0) {
node
= node
.getLeft();
}
System
.out
.println(node
);
while (node
.getRightType() == 1) {
node
= node
.getRight();
System
.out
.println(node
);
}
node
= node
.getRight();
}
}
public void infixThreadedNodes() {
this.infixThreadedNodes(root
);
}
public void infixThreadedNodes(HeroNode node
) {
if (node
== null
) {
return;
}
infixThreadedNodes(node
.getLeft());
if (node
.getLeft() == null
) {
node
.setLeft(pre
);
node
.setLeftType(1);
}
if (pre
!= null
&& pre
.getRight() == null
) {
pre
.setRight(node
);
pre
.setRightType(1);
}
pre
= node
;
infixThreadedNodes(node
.getRight());
}
public void preOrder() {
if (this.root
!= null
) {
this.root
.preOrder();
} else {
System
.out
.println("二叉树为空,无法遍历!");
}
}
public void infixOrder() {
if (this.root
!= null
) {
this.root
.infixOrder();
} else {
System
.out
.println("二叉树为空,无法遍历!");
}
}
public void postOrder() {
if (this.root
!= null
) {
this.root
.postOrder();
} else {
System
.out
.println("二叉树为空,无法遍历!");
}
}
public tree
.threadedbinarytree
.HeroNode
preOrderSearch(int no
) {
if (root
!= null
) {
return root
.preOrderSearch(no
);
} else {
return null
;
}
}
public tree
.threadedbinarytree
.HeroNode
infixOrderSearch(int no
) {
if (root
!= null
) {
return root
.infixOrderSearch(no
);
} else {
return null
;
}
}
public tree
.threadedbinarytree
.HeroNode
postOrderSearch(int no
) {
if (root
!= null
) {
return root
.postOrderSearch(no
);
} else {
return null
;
}
}
public void delNode(int no
) {
if (root
!= null
) {
if (root
.getNo() == no
) {
root
= null
;
} else {
root
.delNode(no
);
}
} else {
System
.out
.println("空树,无法删除");
}
}
}
class HeroNode {
private int no
;
private String name
;
private tree
.threadedbinarytree
.HeroNode left
;
private tree
.threadedbinarytree
.HeroNode right
;
private int leftType
;
private int rightType
;
public void setLeftType(int leftType
) {
this.leftType
= leftType
;
}
public void setRightType(int rightType
) {
this.rightType
= rightType
;
}
public int getLeftType() {
return leftType
;
}
public int getRightType() {
return rightType
;
}
public HeroNode(int no
, String name
) {
super();
this.no
= no
;
this.name
= name
;
}
public int getNo() {
return no
;
}
public String
getName() {
return name
;
}
public tree
.threadedbinarytree
.HeroNode
getLeft() {
return left
;
}
public tree
.threadedbinarytree
.HeroNode
getRight() {
return right
;
}
public void setNo(int no
) {
this.no
= no
;
}
public void setName(String name
) {
this.name
= name
;
}
public void setLeft(tree
.threadedbinarytree
.HeroNode left
) {
this.left
= left
;
}
public void setRight(tree
.threadedbinarytree
.HeroNode right
) {
this.right
= right
;
}
@Override
public String
toString() {
return "HeroNode{" +
"no=" + no
+
", name='" + name
+ '\'' +
'}';
}
public void preOrder() {
System
.out
.println(this.toString());
if (this.left
!= null
) {
this.left
.preOrder();
}
if (this.right
!= null
) {
this.right
.preOrder();
}
}
public void infixOrder() {
if (this.left
!= null
) {
this.left
.infixOrder();
}
System
.out
.println(this.toString());
if (this.right
!= null
) {
this.right
.infixOrder();
}
}
public void postOrder() {
if (this.left
!= null
) {
this.left
.postOrder();
}
if (this.right
!= null
) {
this.right
.postOrder();
}
System
.out
.println(this.toString());
}
public tree
.threadedbinarytree
.HeroNode
preOrderSearch(int no
) {
if (this.no
== no
) {
return this;
}
tree
.threadedbinarytree
.HeroNode resultNode
= null
;
if (this.left
!= null
) {
resultNode
= this.left
.preOrderSearch(no
);
}
if (resultNode
!= null
) {
return resultNode
;
}
if (this.right
!= null
) {
resultNode
= this.right
.preOrderSearch(no
);
}
return resultNode
;
}
public tree
.threadedbinarytree
.HeroNode
infixOrderSearch(int no
) {
tree
.threadedbinarytree
.HeroNode resultNode
= null
;
if (this.left
!= null
) {
resultNode
= this.left
.infixOrderSearch(no
);
}
if (resultNode
!= null
) {
return resultNode
;
}
if (this.no
== no
) {
return this;
}
if (this.right
!= null
) {
resultNode
= this.right
.infixOrderSearch(no
);
}
return resultNode
;
}
public tree
.threadedbinarytree
.HeroNode
postOrderSearch(int no
) {
tree
.threadedbinarytree
.HeroNode resultNode
= null
;
if (this.left
!= null
) {
resultNode
= this.left
.postOrderSearch(no
);
}
if (resultNode
!= null
) {
return resultNode
;
}
if (this.right
!= null
) {
resultNode
= this.right
.postOrderSearch(no
);
}
if (resultNode
!= null
) {
return resultNode
;
}
if (this.no
== no
) {
resultNode
= this;
}
return resultNode
;
}
public void delNode(int no
) {
if (this.left
!= null
&& this.left
.no
== no
) {
this.left
= null
;
return;
}
if (this.right
!= null
&& this.right
.no
== no
) {
this.right
= null
;
return;
}
if (this.left
!= null
) {
this.left
.delNode(no
);
}
if (this.right
!= null
) {
this.right
.delNode(no
);
}
}
}