【tensorflow-2.x-gpu 】python3配置tensorflow-2.x gpu环境(1)

    科技2022-07-13  117

    python3配置tensorflow gpu环境<1>

    1.背景2. Anaconda3安装3.配置tensorflow gpu3.1打开Anaconda Navigator3.2创建虚拟环境3.3安装tensorflow gpu三方包 4. 测试tensorflow-gpu是否安装成功

    1.背景

    最近刚入手了一个游戏本,配置如下: 虽然30系列显卡很香,但以目前的国内供需状态,要想很优惠还得等,做一些小的项目,RTX2060显卡是没啥问题; 于是立flag:持续更新tensorflow 2.x版本的相关知识;

    2. Anaconda3安装

    Anaconda3就是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本;真的好用,基本上能做到拷贝迁移环境(一般我就备份环境的时候会拷贝,太大,有点浪费磁盘); 戴尔G7,安装路径: D:\D04_Anaconda3\install_2020.02 版本: Anaconda3-2020.02-Windows-x86_64.exe 查看anaconda版本:conda -V

    3.配置tensorflow gpu

    3.1打开Anaconda Navigator

    windows开始菜单,打开Anaconda Navigator

    3.2创建虚拟环境

    打开Anaconda Navigator后,点击 Environments,点击Create; 便可以创建需您环境:tf_cuda

    3.3安装tensorflow gpu三方包

    点击 Not installed -->点击tensorflow-gpu 如下图 涉及的66个三方包如下:

    NameUnlinkLinkChannel1tensorflow-gpu-2.1.0pkgs/main2*_tflow_select-2.1.0pkgs/main3*absl-py-0.10.0pkgs/main4*aiohttp-3.6.2pkgs/main5*astor-0.8.1pkgs/main6*async-timeout-3.0.1pkgs/main7*attrs-20.2.0pkgs/main8*blas-1.0pkgs/main9*blinker-1.4pkgs/main10*brotlipy-0.7.0pkgs/main11*cachetools-4.1.1pkgs/main12*cffi-1.14.3pkgs/main13*chardet-3.0.4pkgs/main14*click-7.1.2pkgs/main15*cryptography-3.1.1pkgs/main16*cudatoolkit-10.1.243pkgs/main17*cudnn-7.6.5pkgs/main18*gast-0.2.2pkgs/main19*google-auth-1.22.0pkgs/main20*google-auth-oauthlib-0.4.1pkgs/main21*google-pasta-0.2.0pkgs/main22*grpcio-1.31.0pkgs/main23*h5py-2.10.0pkgs/main24*hdf5-1.10.4pkgs/main25*icc_rt-2019.0.0pkgs/main26*idna-2.10pkgs/main27*importlib-metadata-1.7.0pkgs/main28*intel-openmp-2020.2pkgs/main29*keras-applications-1.0.8pkgs/main30*keras-preprocessing-1.1.0pkgs/main31*libprotobuf-3.13.0pkgs/main32*markdown-3.2.2pkgs/main33*mkl-2020.2pkgs/main34*mkl-service-2.3.0pkgs/main35*mkl_fft-1.2.0pkgs/main36*mkl_random-1.1.1pkgs/main37*multidict-4.7.6pkgs/main38*numpy-1.19.1pkgs/main39*numpy-base-1.19.1pkgs/main40*oauthlib-3.1.0pkgs/main41*opt_einsum-3.1.0pkgs/main42*protobuf-3.13.0pkgs/main43*pyasn1-0.4.8pkgs/main44*pyasn1-modules-0.2.8pkgs/main45*pycparser-2.20pkgs/main46*pyjwt-1.7.1pkgs/main47*pyopenssl-3.1.0pkgs/main48*pyreadline-2.1pkgs/main49*pysocks-1.7.1pkgs/main50*requests-2.24.0pkgs/main51*requests-oauthlib-1.3.0pkgs/main52*rsa-4.6pkgs/main53*scipy-1.5.2pkgs/main54*six-1.15.0pkgs/main55*tensorboard-2.2.1pkgs/main56*tensorboard-plugin-wit-1.6.0pkgs/main57*tensorflow-2.1.0pkgs/main58*tenorflow-base-2.1.0pkgs/main59*tensorflow-estimator-2.1.0pkgs/main60*termcolor-1.1.0pkgs/main61*urllib3-1.25.10pkgs/main62*werkzeug-0.16.1pkgs/main63*win_inet_pton-1.1.0pkgs/main64*wrapt-1.12.1pkgs/main65*yarl-1.5.1pkgs/main66*zipp-3.1.0pkgs/main

    4. 测试tensorflow-gpu是否安装成功

    code如下:

    import tensorflow as tf print('GPU',tf.test.is_gpu_available()) a = tf.constant(2.) b = tf.constant(4.) print(a * b)

    运行如下,tensorflow-gpu安装成功:

    Processed: 0.009, SQL: 8