模型的表示有3种基本形式:
传递函数分子/分母多项式模型传递函数零极点增益模型状态空间模型G ( s ) = b m s m + b m − 1 s m − 1 + . . . + b 1 s + b 0 a n s n + a n − 1 s n − 1 + . . . a 1 s + a 0 G(s)=\frac{b_ms^m+b_{m-1}s^{m-1}+...+b_1s+b_0}{a_ns^n+a_{n-1}s^{n-1}+...a_1s+a_0} G(s)=ansn+an−1sn−1+...a1s+a0bmsm+bm−1sm−1+...+b1s+b0
matlab代码: n u m = [ b m , b m − 1 , . . . b 1 , b 0 ] , d e n = [ a n , a n − 1 , . . . a 1 , a 0 ] G = t f ( n u m , d e n ) ; num = [b_m,b_{m-1},...b_1,b_0],den = [a_n,a_{n-1},...a_1,a_0]\\ G = tf(num,den); num=[bm,bm−1,...b1,b0],den=[an,an−1,...a1,a0]G=tf(num,den);
G ( s ) = K ( s − z 0 ) ( s − z 1 ) . . . ( s − z m ) ( s − p 0 ) ( s − p 1 ) . . . ( s − p n ) G(s) = K\frac{(s-z_0)(s-z_1)...(s-z_m)}{(s-p_0)(s-p_1)...(s-p_n)} G(s)=K(s−p0)(s−p1)...(s−pn)(s−z0)(s−z1)...(s−zm) matlab代码: z = [ z 0 , z 1 , . . . z m ] p = [ p 0 , p 1 , . . . p n ] k = [ K ] G = z p k ( z , p , k ) z = [z_0 ,z_1,...z_m]\\ p = [p_0,p_1,...p_n]\\ k = [K]\\ G = zpk(z,p,k) z=[z0,z1,...zm]p=[p0,p1,...pn]k=[K]G=zpk(z,p,k)
复杂函数用 c o n v ( x 1 , x 2 ) conv(x1,x2) conv(x1,x2)实现连个向量卷积,用来求多项式乘法。
X ˙ = A X + B u Y = C X + D u \dot{X}=AX+Bu\\ Y=CX+Du X˙=AX+BuY=CX+Du
matlab代码: s s ( A , B , C , D ) ss(A,B,C,D) ss(A,B,C,D)
T ( s ) = Y ( s ) R ( s ) = n u m d e n = G 1 ( s ) G 2 ( s ) G 1 ( s ) = n u m 1 d e n 1 G 2 ( s ) = n u m 2 d e n 2 [ n u m , d e n ] = s e r i e s ( n u m 1 , d e n 1 , n u m 2 , d e n 2 ) ; T(s)=\frac{Y(s)}{R(s)}=\frac{num}{den}=G_1(s)G_2(s)\\ G_1(s) = \frac{num1}{den1}\\ G_2(s) = \frac{num2}{den2}\\ [num,den] = series(num1,den1,num2,den2); T(s)=R(s)Y(s)=dennum=G1(s)G2(s)G1(s)=den1num1G2(s)=den2num2[num,den]=series(num1,den1,num2,den2);
G 1 ( s ) = n u m 1 d e n 1 G 2 ( s ) = n u m 2 d e n 2 T ( s ) = Y ( s ) R ( s ) = n u m d e n [ n u m , d e n ] = p a r a l l e l ( n u m 1 , d e n 1 , n u m 2 , d e n 2 ) G_1(s) = \frac{num1}{den1}\\ G_2(s) = \frac{num2}{den2}\\ T(s) = \frac{Y(s)}{R(s)} = \frac{num}{den}\\ [num,den] = parallel(num1,den1,num2,den2) G1(s)=den1num1G2(s)=den2num2T(s)=R(s)Y(s)=dennum[num,den]=parallel(num1,den1,num2,den2)
s i g n : + 1 : 正 反 馈 , − 1 : 负 反 馈 G ( s ) = n u m 1 d e n 1 H ( s ) = n u m 2 d e n 2 T ( s ) = Y ( s ) R ( s ) = n u m d e n [ n u m 1 , d e n 1 ] = f e e d b a c k ( n u m 1 , d e n 1 , n u m 2 , d e n 2 , s i g n ) sign:+1:正反馈,-1:负反馈\\ G(s)=\frac{num1}{den1}\\ H(s) = \frac{num2}{den2}\\ T(s) = \frac{Y(s)}{R(s)} = \frac{num}{den}\\ [num1,den1] = feedback(num1,den1,num2,den2,sign)\\ sign:+1:正反馈,−1:负反馈G(s)=den1num1H(s)=den2num2T(s)=R(s)Y(s)=dennum[num1,den1]=feedback(num1,den1,num2,den2,sign) 状态空间模型与传递函数的转化: [ d e n , n u m ] = s s 2 t f ( F , C , G , D ) [den,num]=ss2tf(F,C,G,D) [den,num]=ss2tf(F,C,G,D)。将有理多项式转换成空间状态模型: [ F , C , G , D ] = t f 2 s s ( n u m , d e n ) ; [F,C,G,D]=tf2ss(num,den); [F,C,G,D]=tf2ss(num,den);
y y y:输出响应, T T T:仿真时间, x x x:状态响应(状态空间模型), s y s sys sys:模型, t t t:仿真时间 [ y , T , x ] = i m p u l s e ( s y s , t ) ; [y,T,x] = impulse(sys,t); [y,T,x]=impulse(sys,t);
y y y:输出响应, T T T:仿真时间, x x x:状态响应(状态空间模型), s y s sys sys:模型, t t t:仿真时间 [ y , T , x ] = s t e p ( s y s , t ) ; [y,T,x] = step(sys,t); [y,T,x]=step(sys,t);
y y y:输出响应, T T T:仿真时间, x x x:状态响应(状态空间模型), s y s sys sys:模型, t t t:仿真时间, u u u:输入 [ y , T , x ] = l s i m ( s y s , u , t ) ; [y,T,x]= lsim(sys,u,t); [y,T,x]=lsim(sys,u,t);
求 G ( s ) = 50 0.05 s 2 + ( 1 + 50 τ ) s + 50 G(s) = \frac{50}{0.05s^2+(1+50\tau)s+50} G(s)=0.05s2+(1+50τ)s+5050在不同的 τ \tau τ时的单位阶跃响应:
上升时间函数:
function trl = trlf( x,yss,t0 ) %trl 计算上身时间 % 此处显示详细说明 r = 1; while x(r)<yss r = r+1; end trl = (r-1)*t0; end峰值时间函数:
function tpl = tplf( x,t0 ) %tpl 计算峰值时间 % 此处显示详细说明 [ymax,tp] = max(x); tpl = (tp-1)*t0; end最大超调量和调整时间函数:
function [tsl,mpl] = mplf( x,t0,yss ,dlta) %mplf 计算1001个采样点时的调整时间和最大超调量 % 此处显示详细说明 [ymax,tp] = max(x); mpl = (ymax-yss)/yss; s = 1001; while (x(s)>(1-dlta))&&(x(s)<1+dlta) s = s-1; end tsl = (s-1)*t0; end主函数:
t = 0:0.001:1; yss = 1; dta = 0.02; nG = [50,50,50]; tao = [0,0.0125,0.025]; trl = zeros(3,1);%上升时间 tpl = zeros(3,1);%峰值时间 mpl = zeros(3,1);%最大超调量 tsl = zeros(3,1);%调整时间 for i = 1:3 dG(i,:) = [0.05,1+50*tao(i),50]; G(i) = tf(nG(i),dG(i,:)); end out1 = step(G(1),t); out2 = step(G(2),t); out3 = step(G(3),t); %以下是计算上升时间 trl(1) = trlf( out1,yss,0.001 ); trl(2) = trlf( out2,yss,0.001 ); trl(3) = trlf( out3,yss,0.001 ); %以下是计算峰值时间 tpl(1) = tplf( out1,0.001 ); tpl(2) = tplf( out2,0.001 ); tpl(3) = tplf( out3,0.001 ); %以下是计算最大超调量和调整时间 [tsl(1),mpl(1)] = mplf(out1,0.001,yss,dta); [tsl(2),mpl(2)] = mplf(out2,0.001,yss,dta); [tsl(3),mpl(3)] = mplf(out3,0.001,yss,dta); %输出 disp('tao = 0 时的上身时间 峰值时间 最大超调量 调整时间: '); disp([trl(1),tpl(1),mpl(1),tsl(1)]); disp('tao = 0.0125 时的上身时间 峰值时间 最大超调量 调整时间: '); disp([trl(2),tpl(2),mpl(2),tsl(2)]); disp('tao = 0.025 时的上身时间 峰值时间 最大超调量 调整时间: '); disp([trl(3),tpl(3),mpl(3),tsl(3)]);结果:
>> abc tao = 0 时的上身时间 峰值时间 最大超调量 调整时间: 0.0640 0.1050 0.3509 0.3530 tao = 0.0125 时的上身时间 峰值时间 最大超调量 调整时间: 0.0780 0.1160 0.1523 0.2500 tao = 0.025 时的上身时间 峰值时间 最大超调量 调整时间: 0.1070 0.1410 0.0415 0.1880r e : re: re:时频特性, i m : im: im:虚频特性, w : w: w:频率范围, s y s : sys: sys:模型, w w w可选频率 [ r e , i m , w ] = n y q u i s t ( s y s , w ) ; [re,im,w]=nyquist(sys,w); [re,im,w]=nyquist(sys,w); 例如:绘制 G ( s ) = 24 ( 0.25 s + 0.5 ) ( 5 s + 2 ) ( 0.05 s + 2 ) G(s)=\frac{24(0.25s+0.5)}{(5s+2)(0.05s+2)} G(s)=(5s+2)(0.05s+2)24(0.25s+0.5)的 N y q u s i t Nyqusit Nyqusit图:
k = 24; numG = k*[0.25 0.5]; denG = conv([5,2],[0.05,2]); sys = tf(numG,denG); [m,n] = size(re); [re,im] = nyquist(sys); for i = 1:n re1(i) = re(1,1,i); im1(i) = im(1,1,i); end plot(re1,im1);grid on; xlabel('实部'); ylabel('虚部'); title('系统Nyquist图');m a g : mag: mag:幅频特性, p h a s e : phase: phase:相频特性, w : w: w:频率范围, s y s : sys: sys:模型 [ m a g , p h a s e , w ] = b o d e ( s y s , w ) ; [mag,phase,w]=bode(sys,w); [mag,phase,w]=bode(sys,w); 例如:绘制 G ( s ) = 24 ( 0.25 s + 0.5 ) ( 5 s + 2 ) ( 0.05 s + 2 ) G(s)=\frac{24(0.25s+0.5)}{(5s+2)(0.05s+2)} G(s)=(5s+2)(0.05s+2)24(0.25s+0.5)的 B o d e Bode Bode图:
k = 24; numG = k*[0.25 0.5]; denG = conv([5,2],[0.05,2]); sys = tf(numG,denG); [m,n] = size(re); w = logspace(-2,3,100); bode(sys,w); title('系统Nyquist图');结果:
协震峰值是: 9.5398 谐振频率是: 0.0100 截至频率是: 3.5112已知特征方程 a n s n + a n − 1 s n − 1 + . . . + a 1 s + a 0 a_ns^n+a_{n-1}s^{n-1}+...+a_1s+a_0 ansn+an−1sn−1+...+a1s+a0的特征系数是 [ a n , a n − 1 , . . . a 1 , a 0 ] [a_n,a_{n-1},...a_1,a_0] [an,an−1,...a1,a0],求根的方法: r o o t s ( [ a n , a n − 1 , . . . a 1 , a 0 ] ) ; roots([a_n,a_{n-1},...a_1,a_0]); roots([an,an−1,...a1,a0]);
s y s : sys: sys:系统模型, G m : Gm: Gm:幅值裕度, P m : P_m: Pm:相位裕度, W c g : W_{cg}: Wcg:相位穿越频率, W c p : W_{cp}: Wcp:幅值穿越频率。 [ G m , P m , W c g , W c p ] = m a r g i n ( s y s ) ; [ m a g , p h a s e , w ] = b o d e ( s y s ) ; → [ G m , P m , W c g , W c p ] = m a r g i n ( m a g , p h a s e , w ) [G_m,P_m,W_{cg},W_{cp}]=margin(sys);\\ [mag,phase,w]=bode(sys);\rightarrow[G_m,P_m,W_{cg},W_{cp}]=margin(mag,phase,w) [Gm,Pm,Wcg,Wcp]=margin(sys);[mag,phase,w]=bode(sys);→[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w)
T = R 1 C 1 α = R 1 R 1 + R 2 < 1 G ( s ) = U 0 ( s ) U i ( s ) = 1 + T s 1 + α T s T=R_1C_1\\\alpha = \frac{R_1}{R_1+R_2}<1\\ G(s) = \frac{U_0(s)}{U_i(s)}=\frac{1+Ts}{1+\alpha Ts}\\ T=R1C1α=R1+R2R1<1G(s)=Ui(s)U0(s)=1+αTs1+Ts
β = R 3 + R 4 R 4 > 1 T = R 4 C 2 G ( s ) = 1 + T s 1 + β T s \beta=\frac{R_3+R_4}{R_4}>1\\ T = R_4C_2\\ G(s) = \frac{1+Ts}{1+\beta Ts} β=R4R3+R4>1T=R4C2G(s)=1+βTs1+Ts
T 1 = R 1 C 1 , T 2 = R 2 C 4 β = R 1 + R 2 R 2 > 1 G ( s ) = ( T 1 s + 1 ) ( T 2 s + 1 ) ( T 1 β s + 1 ) ( β T 2 s + 1 ) T_1 = R_1C_1,T_2 = R_2C_4\\ \beta=\frac{R_1+R_2}{R_2}>1\\ G(s) = \frac{(T_1s+1)(T_2s+1)}{(\frac{T_1}{\beta}s+1)(\beta T_2s+1)} T1=R1C1,T2=R2C4β=R2R1+R2>1G(s)=(βT1s+1)(βT2s+1)(T1s+1)(T2s+1)
T i = R 1 C 1 + R 2 C 2 T d = R 1 C 1 R 2 C 2 R 1 C 1 + R 2 C 2 K p = R 1 C 1 + R 2 C 2 R 1 C 2 G ( s ) = K p ( 1 + 1 T i s + T d s ) T_i=R_1C_1+R_2C_2\\ T_d = \frac{R_1C_1R_2C_2}{R_1C_1+R_2C_2}\\ K_p=\frac{R_1C_1+R_2C_2}{R_1C_2}\\ G(s)=K_p(1+\frac{1}{T_is}+T_ds) Ti=R1C1+R2C2Td=R1C1+R2C2R1C1R2C2Kp=R1C2R1C1+R2C2G(s)=Kp(1+Tis1+Tds)
调用
>> y = PID_fun([40 10],[1 50 0],8,0.1,10,0.001,1000,2*ones(1000,1),10);反馈校正和顺馈校正此处就不再赘述了。
设 t t t为自变量时间, y y y为因变量,微分方程的形式 y ˙ = f ( t , y ) \dot{y}=f(t,y) y˙=f(t,y)。 ′ o d e f u n ′ 'odefun' ′odefun′:包含微分方程(组)的 M M M文件, t s : ts: ts:自变量取值, y 0 : y_0: y0:变量 y y y的初值, p i : p_{i}: pi:文件内的附加参数。 [ t , y ] = o d e 45 ( ′ o d e f u n ′ , t s , y 0 , [ ] , p 1 , p 2 , . . . ) ; [t,y] = ode45('odefun',t_s,y_0,[],p_1,p_2,...); [t,y]=ode45(′odefun′,ts,y0,[],p1,p2,...);
做出 x ¨ + 0.5 x ˙ + 2 x + x 2 = 0 \ddot{x}+0.5\dot{x}+2x+x^2=0 x¨+0.5x˙+2x+x2=0在初值为 ( − 2.2 , 0.5 ) T (-2.2,0.5)^T (−2.2,0.5)T时的相轨迹图: 令 x 1 = x , x 2 = x 1 ˙ x_1 = x,x_2=\dot{x_1} x1=x,x2=x1˙: x 1 ˙ = x 2 x 2 ˙ = − 0.5 x 2 − 2 x 1 − x 1 2 \dot{x_1} =x_2\\ \dot{x_2} = -0.5x_2-2x_1-x_1^2 x1˙=x2x2˙=−0.5x2−2x1−x12 函数:
function y = odefun1( t,x,p1 ) %UNTITLED 此处显示有关此函数的摘要 % 此处显示详细说明 y = [x(2);-p1*x(2)-2*x(1)-x(1)^2]; end主函数:
t = 0:0.01:100; x0 = [-2.2;0.5]; p1 = 0.5; [t,y] = ode45(@odefun1,t,x0,[],p1); plot(y(:,1),y(:,2),'linewidth',2); grid on;xlabel('x_1');ylabel('x_2'); title('相轨迹图'); 连续信号 x ( t ) x(t) x(t),采样输出信号 x ∗ ( t ) x^*(t) x∗(t),单位脉冲序列 δ s ( t ) \delta_s(t) δs(t),采样周期 T T T x ∗ ( t ) = ∑ n = 0 ∞ x ( n T ) δ ( t − n T ) 当 n ≥ 0 时 , 对 上 面 进 行 L a p l a c e 变 换 : L [ x ∗ ( t ) ] = ∑ n = 0 ∞ x ( n T ) ∫ 0 ∞ δ ( t − n T ) e − s t d t = ∑ n = 0 ∞ x ( n T ) e − s n T x^*(t)=\sum_{n=0}^{\infty}x(nT)\delta(t-nT)\\ 当n \geq 0时,对上面进行Laplace变换:\\ L[x^*(t)]=\sum_{n=0}^{\infty}x(nT)\int_0^{\infty}\delta(t-nT)e^{-st}dt=\sum_{n=0}^{\infty}x(nT)e^{-snT} x∗(t)=n=0∑∞x(nT)δ(t−nT)当n≥0时,对上面进行Laplace变换:L[x∗(t)]=n=0∑∞x(nT)∫0∞δ(t−nT)e−stdt=n=0∑∞x(nT)e−snT 如果我们让 z = e s T z=e^{sT} z=esT得到 Z Z Z变换的变换式: Z [ x ( t ) ] = X ( z ) = ∑ n = 0 ∞ x ( n T ) z − n Z[x(t)]=X(z)=\sum_{n=0}^{\infty}x(nT)z^{-n} Z[x(t)]=X(z)=n=0∑∞x(nT)z−n
Z [ a x 1 ( t ) + b x 2 ( t ) ] = a X 1 ( z ) + b X 2 ( z ) Z[ax_1(t)+bx_2(t)]=aX_1(z)+bX_2(z) Z[ax1(t)+bx2(t)]=aX1(z)+bX2(z)
设 Z [ x ( t ) ] = X ( z ) , 且 t < 0 时 , x ( t ) = 0 , 则 : Z [ x ( t − m T ) ] = z − m X ( z ) 设Z[x(t)] = X(z),且t<0时,x(t)=0,则: Z[x(t-mT)]=z^{-m}X(z) 设Z[x(t)]=X(z),且t<0时,x(t)=0,则:Z[x(t−mT)]=z−mX(z)
设 Z [ x ( t ) ] = X ( z ) , 则 : Z [ x ( t + m T ) ] = z m [ X ( z ) − ∑ k = 0 m − 1 x ( k T ) z − k ] 设Z[x(t)] = X(z),则: Z[x(t+mT)]=z^m[X(z)-\sum_{k=0}^{m-1}x(kT)z^{-k}] 设Z[x(t)]=X(z),则:Z[x(t+mT)]=zm[X(z)−k=0∑m−1x(kT)z−k]
设 Z [ x ( t ) ] = X ( z ) , 则 : x ( 0 ) = l i m z → ∞ X ( z ) 设Z[x(t)]=X(z),则: x(0)=lim_{z \rightarrow \infty}X(z) 设Z[x(t)]=X(z),则:x(0)=limz→∞X(z)
设 Z [ x ( t ) ] = X ( z ) , 且 ( z − 1 ) X ( z ) 的 全 部 极 点 位 于 单 位 圆 内 , 则 : x ( ∞ ) = l i m z → 1 [ X ( z ) ( z − 1 ) ] 设Z[x(t)]=X(z),且(z-1)X(z)的全部极点位于单位圆内,则:x(\infty)=lim_{z \rightarrow 1}[X(z)(z-1)] 设Z[x(t)]=X(z),且(z−1)X(z)的全部极点位于单位圆内,则:x(∞)=limz→1[X(z)(z−1)]
Z [ a k ] = z z − a Z [ a k c o s k π ] = z z + a Z[a^{k}]=\frac{z}{z-a}\\ Z[a^kcosk\pi]=\frac{z}{z+a} Z[ak]=z−azZ[akcoskπ]=z+az
稳定性分析和校正设计就不描述了。
若 G ( z ) = n u m d ( z ) d e n d ( z ) G(z) = \frac{numd(z)}{dend(z)} G(z)=dend(z)numd(z), T T T为采样时间, ′ z o h ′ 'zoh' ′zoh′为零阶保持,传递函数 G p ( s ) = n u m ( s ) d e n ( s ) G_p(s)=\frac{num(s)}{den(s)} Gp(s)=den(s)num(s),且 G ( z ) G(z) G(z)对应着传递函数 G p ( s ) G_p(s) Gp(s),则: [ n u m d , d e n d ] = c 2 d m ( n u m , d e n , T , ′ z o h ′ ) ; [numd,dend] = c2dm(num,den,T,'zoh'); [numd,dend]=c2dm(num,den,T,′zoh′); 而如果求得逆的话: [ n u m , d e n ] = d 2 c m ( n u m d , d e n d , T , ′ z o h ′ ) ; [num,den] = d2cm(numd,dend,T,'zoh'); [num,den]=d2cm(numd,dend,T,′zoh′); 如果要求任意输入响应, y y y:输出响应, x : x: x:状态响应, u : u: u:输入, G ( s ) = n u m d e n G(s)=\frac{num}{den} G(s)=dennum, k : k: k:指定的采样数。 [ y , x ] = d l s i m ( n u m , d e n , u , k ) ; [y,x]=dlsim(num,den,u,k); [y,x]=dlsim(num,den,u,k);
输出:
num/den = 0.36788 z + 0.26424 ------------------------ z^2 - 1.3679 z + 0.36788