每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0…m-1报数…这样下去…直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!_)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)
如果没有小朋友,请返回-1
列表方式
class Solution { public: int LastRemaining_Solution(int n, int m) { if(n<1 || m<1)return -1; list<int> lst; int i = 0; for(;i<n;i++){ lst.push_back(i); } list<int>::iterator item = lst.begin(); while(lst.size()>1){ for(i = 1;i<m;i++){ item++; if(item == lst.end()){ item = lst.begin(); } } list<int>::iterator next = ++item; if(next == lst.end()){ next = lst.begin(); } item--; lst.erase(item); item = next; } return lst.front(); } };链接:https://www.nowcoder.com/questionTerminal/f78a359491e64a50bce2d89cff857eb6 来源:牛客网
如果只求最后一个报数胜利者的话,我们可以用数学归纳法解决该问题,为了讨 论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人 继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新 的约瑟夫环(以编号为k=m%n的人开始):
k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
…
…
k-2 --> n-2
k-1 --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解: 例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情 况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x’=(x+k)%n。
class Solution { public: int LastRemaining_Solution(int n, int m) { if(n<1 || m<1)return -1; int last = 0; for(int i = 2;i<=n;i++){ last = (last + m)%i; } return last; } };