本专栏按照 https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html 顺序进行总结 。
A 2 C \color{red}A2C A2C :[ paper | code ]
A2C 是 A3C 的同步版本;即 A3C第一个 A(异步) 被移除。在A3C中,每个 agent 都独立地与全局参数通信,因此有时 某个 agent 可能会使用不同版本的策略,因此聚合的更新可能不是最优的。为了解决不一致性,A2C中的 coordinator 会在更新全局参数之前等待所有并行的 actors 完成他们的工作,然后在下一个迭代中并行的 actors 使用相同的策略。梯度同步更新使训练更有凝聚力,有可能使收敛速度更快。
A2C已被证明能够更有效地利用gpu,并在大批量下更好地工作,同时实现与A3C相同或更好的性能。
回顾 Actor-Critic
在PG策略中,如果我们用Q函数来代替R,同时我们创建一个Critic网络来计算Q函数值,那么我们就得到了Actor-Critic方法。Actor参数的梯度变为: 此时的Critic根据估计的Q值和实际Q值的平方误差进行更新,对Critic来说,其loss为:
A2C
我们常常给 Q Q Q 值增加一个基线,使得反馈有正有负,这里的基线通常用状态的价值函数来表示,因此梯度就变为了:
但是,这样的话我们需要有两个网络分别计算状态-动作价值 Q Q Q 和状态价值 V V V,因此我们做这样的转换:
这样会是增加一定的方差,不过可以忽略不计,这样我们就得到了Advantage Actor-Critic方法,此时的Critic变为估计状态价值V的网络。因此Critic网络的损失变为实际的状态价值和估计的状态价值的平方损失:
A2C的统一学习 和 A3C每个Worker的训练学习,采样数据的Policy 与 当前学习的Policy参数是一致的,即on-policy学习。
详细见 github: https://github.com/sweetice/Deep-reinforcement-learning-with-pytorch/blob/master/Char04 A2C/A2C.py
import math import random import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.distributions import Categorical import matplotlib.pyplot as plt use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") from multiprocessing_env import SubprocVecEnv num_envs = 8 env_name = "CartPole-v0" def make_env(): def _thunk(): env = gym.make(env_name) return env return _thunk plt.ion() envs = [make_env() for i in range(num_envs)] envs = SubprocVecEnv(envs) # 8 env env = gym.make(env_name) # a single env class ActorCritic(nn.Module): def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0): super(ActorCritic, self).__init__() self.critic = nn.Sequential( nn.Linear(num_inputs, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1) ) self.actor = nn.Sequential( nn.Linear(num_inputs, hidden_size), nn.ReLU(), nn.Linear(hidden_size, num_outputs), nn.Softmax(dim=1), ) def forward(self, x): value = self.critic(x) probs = self.actor(x) dist = Categorical(probs) return dist, value def test_env(vis=False): state = env.reset() if vis: env.render() done = False total_reward = 0 while not done: state = torch.FloatTensor(state).unsqueeze(0).to(device) dist, _ = model(state) next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0]) state = next_state if vis: env.render() total_reward += reward return total_reward def compute_returns(next_value, rewards, masks, gamma=0.99): R = next_value returns = [] for step in reversed(range(len(rewards))): R = rewards[step] + gamma * R * masks[step] returns.insert(0, R) return returns def plot(frame_idx, rewards): plt.plot(rewards,'b-') plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1])) plt.pause(0.0001) num_inputs = envs.observation_space.shape[0] num_outputs = envs.action_space.n #Hyper params: hidden_size = 256 lr = 1e-3 num_steps = 5 model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device) optimizer = optim.Adam(model.parameters()) max_frames = 20000 frame_idx = 0 test_rewards = [] state = envs.reset() while frame_idx < max_frames: log_probs = [] values = [] rewards = [] masks = [] entropy = 0 # rollout trajectory for _ in range(num_steps): state = torch.FloatTensor(state).to(device) dist, value = model(state) action = dist.sample() next_state, reward, done, _ = envs.step(action.cpu().numpy()) log_prob = dist.log_prob(action) entropy += dist.entropy().mean() log_probs.append(log_prob) values.append(value) rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device)) masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device)) state = next_state frame_idx += 1 if frame_idx % 100 == 0: test_rewards.append(np.mean([test_env() for _ in range(10)])) plot(frame_idx, test_rewards) next_state = torch.FloatTensor(next_state).to(device) _, next_value = model(next_state) returns = compute_returns(next_value, rewards, masks) log_probs = torch.cat(log_probs) returns = torch.cat(returns).detach() values = torch.cat(values) advantage = returns - values actor_loss = -(log_probs * advantage.detach()).mean() critic_loss = advantage.pow(2).mean() loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy optimizer.zero_grad() loss.backward() optimizer.step() #test_env(True)